
AFRL-VA-WP-TM-2005-3080
COMPOSITIONAL ABSTRACTION AND
REFINEMENT FOR ASPECTS (CARA)

Dr. John Rushby
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

MARCH 2004

Final Report for 01 July 2000 – 01 March 2004

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
Public Affairs Office (AFRL/WS) and is releasable to the National Technical Information Service
(NTIS). It will be available to the general public, including foreign nationals.

PAO Case Number: AFRL/WS 05-1124, 09 May 2005.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

/s/ /s/
__ ___
Raymond A. Bortner Michael P. Camden, Chief
Senior Electronic Engineer Control Systems Development and

 Applications Branch
 Control Sciences Division

/s/
__
Brian W. Van Vliet
Chief, Control Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

March 2005 Final 07/01/2000– 03/01/2004
5a. CONTRACT NUMBER

F33615-00-C-3043
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

COMPOSITIONAL ABSTRACTION AND REFINEMENT FOR ASPECTS (CARA)

5c. PROGRAM ELEMENT NUMBER
0602301

5d. PROJECT NUMBER

A04Z
5e. TASK NUMBER

6. AUTHOR(S)

Dr. John Rushby

5f. WORK UNIT NUMBER

 AL
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/VACC Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

Defense Advanced Research Projects
Agency (DARPA/IXO)
3701 N. Fairfax Drive
Arlington, VA 22203-1714

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

 AFRL-VA-WP-TM-2005-3080
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Report contains color.
14. ABSTRACT

The project originally focused on compositional formal methods for aspect-oriented programs and was located in the
PCES program. Soon after its inception, however, the project was moved to the SEC (Software Enabled Control) program
where its focus shifted to formal analysis of mixed discrete/continuous (i.e., hybrid) systems. We developed a two-step
approach to analysis of hybrid systems: compute a property-preserving discrete approximation to the original hybrid
system, and then analyze the discrete approximation. The approximation method is called Hybrid Abstraction and was
developed by us in the DARPA MoBIES program. In the present project, we developed the theorem-proving technology
that enables automated calculation of the approximation, and we built the SAL (Symbolic Analysis Laboratory) system
for specification and analysis of discrete systems.

15. SUBJECT TERMS
Formal methods, aspect-oriented design, Hybrid systems, program composition

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 148
 Raymond A. Bortner
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-8292

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Part I

Introduction

1

 1

2

 2

This report covers the period July 1, 2000 through March 1, 2004and documents
work performed by SRI International for the DARPA PCES and SEC programs through
AFRL-WPAFB Contract F33615-00-C-3043.

The project originally focused on compositional formal methods for aspect-oriented
programs and was located in the PCES program. Soon after its inception, however, the
project was moved to the SEC (Software Enabled Control) program where its focus shifted
to formal analysis of mixed discrete/continuous (i.e., hybrid) systems. We developed a
two-step approach to analysis of hybrid systems: compute a property-preserving discrete
approximation to the original hybrid system, and then analyze the discrete approximation.
The approximation method is calledHybrid Abstractionand was developed by us in the
DARPA MoBIES program. In the present project, we developed the theorem-proving tech-
nology that enables automated calculation of the approximation, and we built the SAL
(Symbolic Analysis Laboratory) system for specification and analysis of discrete systems.

Research Products

The outputs of this research are documented in a series of technical reports and papers that
are collected in Part II of this report. Below, we provide an index and abstracts for these
papers. All the papers were selected for presentation at major scientific conferences, and
we also provide citations for these publications.

In addition, the methods developed in this project were implemented in prototype tools.
DARPA reduced the funding and scope of this project during its execution, and it was
terminated early. Nonetheless, we were able to produce the first prototype of the SAL
system (SAL 1.0) and to make this available to the research community. With funding
from other sources, we have been able to continue development of SAL and this is now a
robust and capable system with many users. SAL is available for download fromhttp:
//sal.csl.sri.com ; a description of its current capabilities is provided in [1] and its
successful application to a large problem is described in [2].

Little Engines of Proof by N. Shankar. Published as [3].
The key to practical computation of the approximations used in Hybrid Abstraction
is efficient theorem proving over a combination of arithmetic theories. The approach
used in this project is based on constructing decision procedures for individual theo-
ries, and then combining them to yield a decision procedure for the combined theory.
This approach, now widely adopted, is advocated in this influential paper under the
name “little engines of proof.”

Abstract The automated construction of mathematical proof is a basic activity in
computing. Since the dawn of the field of automated reasoning, there have been
two divergent schools of thought. One school, best represented by Alan Robinson’s
resolution method, is based on simple uniform proof search procedures guided by

3

 3

heuristics. The other school, pioneered by Hao Wang, argues for problem-specific
combinations of decision and semi-decision procedures. While the former school
has been dominant in the past, the latter approach has greater promise. In recent
years, several high-quality inference engines have been developed, including propo-
sitional satisfiability solvers, ground decision procedures for equality and arithmetic,
quantifier elimination procedures for integers and reals, and abstraction methods for
finitely approximating problems over infinite domains. We describe some of these
“little engines of proof” and a few of the ways in which they can be combined. We
focus in particular on combining different decision procedures for use in automated
verification.

Deconstructing ShostakBy Harald Rueß and N. Shankar. Published as [4].
An important technique for combining “little engines of proof” was originally devel-
oped at SRI in the 1970s by Robert Shostak. Although widely used, the foundations
of this method have not been rigorously established and prior to this paper, all treat-
ments and implementations were flawed.

Abstract Decision procedures for equality in a combination of theories are at the
core of a number of verification systems. Shostak’s decision procedure for equality in
the combination of solvable and canonizable theories has been around for nearly two
decades. Variations of this decision procedure have been implemented in a number
of systems including STP, Ehdm, PVS, STeP, and SVC. The algorithm is quite subtle,
and a correctness argument for it has remained elusive. Shostak’s algorithm and all
previously published variants of it yield incomplete decision procedures. We describe
a variant of Shostak’s algorithm along with proofs of termination, soundness, and
completeness.

Verifying Shostak by Jonathan Ford and N, Shankar. Published as [5].
This paper confirms the correctness of the argument developed in the previous paper
by formally verifying it using SRI’s PVS system.

Abstract Decision procedures for combinations of theories are at the core of many
modern theorem provers such as ACL2, Ehdm, PVS, SIMPLIFY, the Stanford Pas-
cal Verifier, STeP, SVC, and Z/Eves. Shostak, in 1984, published a decision pro-
cedure for the combination of canonizable and solvable theories. Recently, Rueß
and Shankar showed Shostak’s method to be incomplete and nonterminating, and
presented a correct version of Shostak’s algorithm along with informal proofs of ter-
mination, soundness, and completeness. We describe a formalization and mechanical
verification of these proofs using the PVS verification system. The formalization
itself posed significant challenges and the verification revealed some gaps in the in-
formal argument.

4

 4

Combining Shostak Theoriesby N. Shankar and Harald Rueß. Published as [6]

Shostak’s method works for theories that are canonizable and solvable. The combina-
tion of the canonizers yields a canonizer for the combination, but this is not the case
for solvers. This paper presents a crucial extension to Shostak’s method that resolves
this difficulty.

Abstract Ground decision procedures for combinations of theories are used in
many systems for automated deduction. There are two basic paradigms for com-
bining decision procedures. The Nelson-Oppen method combines decision proce-
dures for disjoint theories by exchanging equality information on the shared vari-
ables. In Shostak’s method, the combination of the theory of pure equality with
canonizable and solvable theories is decided through an extension of congruence clo-
sure that yields a canonizer for the combined theory. Shostak’s original presentation,
and others that followed it, contained serious errors that were corrected for the ba-
sic procedure by the present authors. Shostak also claimed that it was possible to
combine canonizers and solvers for disjoint theories. This claim is easily verifiable
for canonizers, but is unsubstantiated for the case of solvers. We show how our ear-
lier procedure can be extended to combine multiple disjoint canonizable, solvable
theories within the Shostak framework.

On the Confluence of Linear Shallow Term Rewrite Systemsby Guillem Godoy,
Ashish Tiwari, and Rakesh Verma. Available as [7].

The method for computing the approximation used in Hybrid Abstraction uses in-
sights from the papers above and from this one. The culmination of all these tech-
niques is the method used in HybridSAL, which was funded under the MoBIES pro-
gram and is described in [8].

Abstract This paper shows that the confluence of shallow linear term rewrite sys-
tems is decidable. This class of rewrite systems properly includes ground rewrite
systems and shallow, linear, and nonsharing rewrite systems for which confluence
was shown to admit a polynomial time decision procedure previously. For example,
the commutativity axiom falls under this class. The decision procedure presented in
this paper is a nontrivial generalization of the polynomial time algorithms for decid-
ing confluence of ground and restricted nonground term rewrite systems presented
previously. This algorithm has a polynomial time complexity if the maximum arity
of a function symbol in the signature is considered a constant. This paper also gives
EXPTIME-hardness proofs for reachability and confluence of shallow term rewrite
systems. This shows that the shallow linear assumptions made in this paper are fairly
tight.

5

 5

The SAL Language Manual by Leonardo de Moura, Sam Owre, and N. Shankar. Avail-
able as [9].
The heart of the SAL system is its language, also called SAL. The SAL language
provides an attractive language for writing specifications, and it is also suitable as a
target for translating specifications originally written in other notations.

Abstract SAL stands for Symbolic Analysis Laboratory. It is a framework for
combining different tools for abstraction, program analysis, theorem proving, and
model checking toward the calculation of properties (symbolic analysis) of transition
systems. A key part of the SAL framework is a language for describing transition
systems. This language serves as a specification language and as the target for trans-
lators that extract the transition system description for popular programming lan-
guages such as Esterel, Java, and Statecharts. The language also serves as a common
source for driving different analysis tools through translators from the SAL language
to the input format for the tools, and from the output of these tools back to the SAL
language.
The SAL language was originally designed in collaboration with David Dill of Stan-
ford University and Thomas Henzinger of the University of California at Berkeley.
The version presented here is the one currently accepted by the tools developed at
SRI.

A Technique for Invariant Generation by Ashish Tiwari, Harald Rueß, Hassen Saı̈di,
and N. Shankar. Published as [10].
Although the SAL tools currently available (seehttp://sal.csl.sri.com)
are all model checkers, the larger plan includes construction of bridges to deductive
methods such as PVS. An important technique in deductive verification is the method
of inductive invariance, and a crucial element in the automation of this method is au-
tomated construction and strengthening of auxiliary invariants. This paper describes
methods for accomplishing this task.

Abstract Most of the properties established during verification are either invariants
or depend crucially on invariants. The effectiveness of automated formal verification
is therefore sensitive to the ease with which invariants, even trivial ones, can be au-
tomatically deduced. While the strongest invariant can be defined as the least fixed
point of the strongest post-condition of a transition system starting with the set of
initial states, this symbolic computation rarely converges. We present a method for
invariant generation and strengthening that relies on the simultaneous construction
of least and greatest fixed points, restricted widening and narrowing, and quantifier
elimination. The effectiveness of the method is demonstrated on a number of exam-
ples.

6

 6

Bibliography

[1] Leonardo de Moura, Sam Owre, Harald Ruess, John Rushby, N. Shankar, Maria
Sorea, and Ashish Tiwari. SAL 2. Submitted for publication, January 2004. Available
athttp://www.csl.sri.com/˜rushby/abstracts/sal-tool .

[2] Wilfried Steiner, John Rushby, Maria Sorea, and Holger Pfeifer. Model checking a
fault-tolerant startup algorithm: From design exploration to exhaustive fault simula-
tion. Submitted for publication, December 2003. Available athttp://www.csl.
sri.com/˜rushby/abstracts/startup-verification .

[3] Natarajan Shankar. Little engines of proof. In Lars-Henrik Eriksson and Peter Lind-
say, editors,Formal Methods Europe (FME’02), volume 2391 ofLecture Notes in
Computer Science, pages 1–20, Copenhagen, Denmark, July 2002. Springer-Verlag.

[4] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In16th Annual IEEE
Symposium on Logic in Computer Science, pages 19–28, Boston, MA, July 2001.
IEEE Computer Society.

[5] Jonathan Ford and Natarajan Shankar. Verifying Shostak. In A. Voronkov, editor,
Automated Deduction—CADE-18, 18th International Conference on Automated De-
duction, volume 2392 ofLecture Notes in Computer Science, pages 347–362, Copen-
hagen, Denmark, July 2002. Springer-Verlag.

[6] Natarajan Shankar and Harald Rueß. Combining Shostak theories. In Sophie Ti-
son, editor,International Conference on Rewriting Techniques and Applications (RTA
‘02), volume 2378 ofLecture Notes in Computer Science, pages 1–18, Copenhagen,
Denmark, July 2002. Springer-Verlag.

[7] Guillem Godoy, Ashish Tiwari, and Rakesh Verma. On the confluence of linear shal-
low term rewrite systems. In H. Alt and M. Habib, editors,20th Intl. Symposium
on Theoretical Aspects of Computer Science (STACS 2003), volume 2607 ofLecture
Notes in Computer Science, pages 85–96. Springer-Verlag, February 2003.

[8] Ashish Tiwari. Abstraction based theorem proving: An example from the theory of
Reals. In Silvio Ranise and Cesare Tinelli, editors,Proceedings of the CADE-19

7

 7

Workshop on Pragmatics of Decision Procedures in Automated Deduction, PDPAR
2003, pages 40–52, Miami, FL, July 2003. The full proceedings are available at
http://www.cs.miami.edu/˜geoff/CADE-19/W2.pdf ; this paper is also
available athttp://www.csl.sri.com/users/tiwari/pdpar03.html .

[9] Leonardo de Moura, Sam Owre, and N. Shankar. The SAL language manual. Techni-
cal Report SRI-CSL-01-02, Computer Science Laboratory, SRI International, Menlo
Park, CA, October 2001. Revised August 2003.

[10] Ashish Tiwari, Harald Rueß, Hassen Saı̈di, and N. Shankar. A technique for invariant
generation. In T. Margaria and W. Yi, editors,Tools and Algorithms for the Construc-
tion and Analysis of Systems: 7th International Conference, TACAS 2001, volume
2031 of Lecture Notes in Computer Science, pages 113–127, Genova, Italy, April
2001. Springer-Verlag.

8

 8

Part II

Technical Papers

9

 9

10

 10

Invited paper for FLoC’02. Appears in the Proceedings of FME’02, LNCS.
c©Springer-Verlag

Little Engines of Proof?

Natarajan Shankar

Computer Science Laboratory
SRI International

Menlo Park CA 94025 USA
shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/
Phone: +1 (650) 859-5272 Fax: +1 (650) 859-2844

Abstract. The automated construction of mathematical proof is a basic
activity in computing. Since the dawn of the field of automated reason-
ing, there have been two divergent schools of thought. One school, best
represented by Alan Robinson’s resolution method, is based on simple
uniform proof search procedures guided by heuristics. The other school,
pioneered by Hao Wang, argues for problem-specific combinations of de-
cision and semi-decision procedures. While the former school has been
dominant in the past, the latter approach has greater promise. In re-
cent years, several high quality inference engines have been developed,
including propositional satisfiability solvers, ground decision procedures
for equality and arithmetic, quantifier elimination procedures for integers
and reals, and abstraction methods for finitely approximating problems
over infinite domains. We describe some of these “little engines of proof”
and a few of the ways in which they can be combined. We focus in par-
ticular on combining different decision procedures for use in automated
verification.

Its great triumph was to prove that the sum of two even numbers is
even.

Martin Davis [Dav83] (on his Presburger arithmetic procedure)

The most interesting lesson from these results is perhaps that even in a
fairly rich domain, the theorems actually proved are mostly ones which
call on a very small portion of the available resources of the domain.

Hao Wang (quoted by Davis [Dav83])

? Funded by NSF Grants CCR-0082560 and CCR-9712383, DARPA/AFRL Contract
F33615-00-C-3043, and NASA Contract NAS1-20334. John Rushby, Sam Owre,
Ashish Tiwari, and Tomás Uribe commented on earlier drafts of this paper.

1

 11

1 Introduction

At a very early point in its development, the field of automated reasoning took
an arguably wrong turn. For nearly forty years now, the focus in automated
reasoning research has been on big iron: general-purpose theorem provers based
on uniform proof procedures augmented with heuristics. These efforts have not
been entirely fruitless. As success stories, one might list an impressive assort-
ment of open problems that have succumbed to semi-brute-force methods, and
spin-off applications such as logic programming. However, there has been very
little discernible progress on the problem of automated proof construction in any
significant mathematical domain. Proofs in these domains tend to be delicate ar-
tifacts whose construction requires a collection of well-crafted instruments, little
engines of proof, working in tandem. In other disciplines such as numerical anal-
ysis, computer algebra, and combinatorial algorithms, it is quite common to have
libraries of useful routines. Such software libraries have not taken root in auto-
mated deduction because the scientific and engineering challenges involved are
quite significant. We examine some of the successes in building and combining
little deduction engines for building proofs and refutations (e.g., counterexam-
ples), and survey some of the challenges that still lie ahead.

The tension between general-purpose proof search and special-purpose decision
procedures has been with us from very early on. Automated reasoning had its
beginnings in the pioneering Logic Theorist system of Newell, Shaw, and Si-
mon [NSS57]. The theorems they proved were shown by Hao Wang [Wan60b]
to fall within simply decidable fragments like propositional logic and the ∀∗∃∗
Bernays-Schönfinkel fragment of first-order logic [BGG97]. Many technical ideas
from the Logic Theorist such as subgoaling, substitution, replacement, and for-
ward and backward chaining, have been central to automated reasoning, but
the dogma that human-oriented heuristics are the key to effective theorem prov-
ing has not been vindicated. Hao Wang [Wan60a] proposed an entirely different
approach that he called inferential analysis as a parallel to numerical analysis.
Central to his approach was the use of domain-specific decision and semi-decision
procedures, so that proofs could be constructed by means of reductions to some
combination of problems that could each be easily solved. Due to the prevailing
bias in artificial intelligence, Wang lost the debate at that point in time, but,
as we argue here, his ideas still make plenty of sense. As remarked by Martin
Davis [Dav83]:

The controversy referred to may be succinctly characterized as being be-
tween the two slogans: “Simulate people” and “Use mathematical logic”.
. . . Thus as early as 1961 Minsky [Min63] remarked

. . . it seems clear that a program to solve real mathematical prob-
lems will have to combine the mathematical sophistication of
Wang with the heuristic sophistication of Newell, Shaw, and Si-
mon.

2

 12

The debate between human-oriented and logic-oriented approaches is beside the
point. The more significant debate in automated reasoning is between two ap-
proaches that in analogy with economics can be labelled as macrological and
micrological . The macrological approach takes a language and logic such as first-
order logic as given, and attempts to find a uniform (i.e., problem-independent)
method for constructing proofs of conjectures stated in the logic. The micrologi-
cal approach attacks a class of problems and attempts to find the most effective
way of validating or refuting conjectures in this problem class. In his writings,
Hao Wang was actually espousing a micrological viewpoint. He wrote [Wan60a]

In contrast with pure logic, the chief emphasis of inferential analysis is
on the efficiency of algorithms, which is usually obtained by paying a
great deal of attention to the detailed structure of problems and their
solutions, to take advantage of possible systematic short cuts.

Automated reasoning got off to a running start in the 1950s. Already in 1954,
Davis [Dav57] had implemented a decision procedure for Presburger arith-
metic [Pre29]. Davis and Putnam [DP60], during 1958–60, devised a decision
procedure for CNF satisfiability (SAT) based on inference rules for propagation
of unit clauses, ground resolution, deletion of clauses with pure literals, and
splitting. The ground resolution rule turned out to be space-inefficient and was
discarded in the work of Davis, Logemann, and Loveland [DLL62]. Variants of
the latter procedure are still employed in modern SAT solvers. Gilmore [Gil60]
and Prawitz [Pra60] examined techniques for first-order validity based on Her-
brand’s theorem. Many of the techniques from the 1950s still look positively
modern.

Robinson’s introduction [Rob65] of the resolution principle (during 1963–65)
based on unification brought about a qualitative shift in automated theorem
proving. From that point on, the field of automated reasoning never looked
forward. Resolution provides a simple inference rule for refutational proofs for
first-order statements in skolemized, prenex form. It spawned a multitude of
strategies, heuristics, and extensions. Nearly forty years later, resolution [BG01]
remains extremely popular as a general-purpose proof search method primarily
because the basic method can be implemented and extended with surprising ease.
Resolution-based methods have had some success in proving open problems in
certain domains where general-purpose search can be productive. The impact of
resolution on theorem proving in mathematically rich domains has not been all
that encouraging.

The popularity of uniform proof methods like resolution stems from the simple
dogma that since first-order logic is a generic language for expressing statements,
generic first-order proof search methods must also be adequate for finding proofs.
This central dogma seems absurd on the face of it. Stating a problem and solving
it are two quite separate matters. But the appeal of the dogma is obvious.
A simple, generic method for proving theorems basically hits the jackpot by
fulfilling Leibniz’s dream of a reasoning machine. A more sophisticated version

3

 13

of the dogma is that a uniform proof method can serve as the basic structure for
introducing domain-specific automation. There is little empirical evidence that
even this dogma has any validity.

On the other hand, certain domain-specific automated theorem provers have
been quite effective. The Boyer-Moore line of theorem provers [BM79,KMM00]
has had significant success in the area of inductive proofs of recursively defined
functions. Various geometry theorem provers [CG01] based on both algebraic
and non-algebraic, machine-oriented and human-oriented methods, have been
able to automatically prove theorems that would tax human ingenuity. Both of
these classes of theorem provers owe their success to domain-specific automation
rather than general-purpose theorem proving.

Main Thesis. Automated reasoning has for too long been identified with uni-
form proof search procedures in first-order logic. This approach shows very little
promise. The basic seduction of uniform theorem proving techniques is that
phenomenal gains could be achieved with very modest implementation effort.
Hao Wang [Wan60b,Wan60a,Wan63] in his early papers on automated reasoning
sketched the vision of a field of inferential analysis that would take a deeper look
at the problem of automating mathematical reasoning while exploiting domain-
specific decision procedures. He wrote [Wan63]

That proof procedures for elementary logic can be mechanized is familiar.
In practice, however, were we slavishly to follow these procedures with-
out further refinements, we should encounter a prohibitively expansive
element. . . . In this way we are led to a closer study of reduction proce-
dures and of decision procedures for special domains, as well as of proof
procedures of more complex sorts.

Woody Bledsoe [Ble77] made a similar point in arguing for semantic theorem
proving techniques as opposed to resolution.

Decision procedures [Rab78], and more generally inference procedures, are cru-
cial to the approach advocated here. Few problems are stated in a form that is
readily decidable, but proof search strategies, heuristics, and human guidance
can be used to decompose these problems into decidable subproblems. Thus,
even though not many interesting problems are directly expressible in Pres-
burger arithmetic, a great many of the naturally arising proof obligations and
subproblems do fall into this decidable class.

Building a library of automated reasoning routines along the lines of numerical
analysis and computer algebra, is not as easy as it looks. A theorem prover has a
simple interface in that it is given a conjecture and it returns a proof or a disproof.
The lower-level procedures often lack clear interface specifications of this sort.
Even if they did, building a theorem prover out of modular components may not
be as efficient as a more monolithic system. Boyer and Moore [BM86] indicate
how even a simple decision procedure can have a complex interaction with the
other components, so that it is not merely a black box that returns proved or

4

 14

disproved . The construction of modular inference procedures is a challenging
research issues in automated reasoning.

Work on little engines of proof has been gathering steam lately Many groups
are actively engaged in the construction of little proof engines, while oth-
ers are putting in place the train tracks on which these engines can run.
PVS [ORSvH95] itself can be seen as an attempt to unify many different in-
ference procedures: typechecking, ground decision procedures, simplification,
rewriting, MONA [EKM98], model checking [CGP99], abstraction, and static
analysis, within a single system with an expressive language for writing mathe-
matics.

2 Propositional Logic

The very first significant metamathematical results were those on the soundness,
completeness, and decidability of propositional logic [Pos21]. Since boolean logic
has applications in digital circuit design, a lot of attention has been paid to
the problem of propositional satisfiability. A propositional formula φ is built
from propositional atoms pi by means of negation ¬φ, disjunction φ1 ∨ φ2, and
conjunction φ1 ∧ φ2. Further propositional connectives can be defined in terms
of basic ones like ¬ and ∨. A propositional formula can be placed in negation
normal form, where all the negations are applied only to propositional atoms. A
literal l is an atom p or its negation ¬p. A clause C is a disjunction of literals.
By labelling subformulas with atoms and using distributivity, any propositional
formula can be efficiently transformed into one that is in conjunctive normal
form (CNF) as a conjunction of clauses. A CNF formula can be viewed as a bag
Γ of clauses. The Davis–Putnam method (DP) [DP60] consisted of the following
rules:

1. Unit propagation: l, Γ is satisfiable if Γ [l 7→ >,¬l 7→ ⊥] is satisfiable.
2. Pure literal: Γ is satisfiable if Γ −∆ is satisfiable, for ¬l 6∈ ddΓ ee, where ddΓ ee

is the set of subformulas of Γ , and l ∈ C for each C ∈ ∆.
3. Splitting: Γ is satisfiable if either l, Γ or ¬l, Γ is satisfiable.
4. Ground resolution: l∨C1,¬l∨C2, Γ is satisfiable if C1 ∨C2, Γ is satisfiable.

The Davis–Logemann–Loveland (DLL) variant [DLL62] drops the ground reso-
lution rule since it turned out to be space-inefficient. Several modern SAT solvers
such as SATO [Zha97], GRASP [MSS99], and Chaff [MMZ+01], are based on
the DLL method. They are capable of solving satisfiability problems with hun-
dreds of thousands of propositional variables and clauses. With this kind of
performance, many significant applications become feasible including invariant-
checking for systems of bounded size, bounded model checking, i.e., the search
for counterexamples of length k for a temporal property, and boolean equiva-
lence checking where two circuits are checked to have the same input/output
behavior.

5

 15

St̊almarck’s method [SS00] does not employ a CNF representation. Truth val-
ues are propagated from formulas to subformulas through a method known as
saturation. There is a splitting rule similar to that of DP, but it can be applied
to subformulas and not just propositions. The key component of St̊almarck’s
method is the dilemma rule which considers the intersection of the two subfor-
mula truth assignments derived from splitting. Further splitting is carried out
with respect to this intersection.

Binary Decision Diagrams. Reduced Ordered Binary Decision Diagrams (ROB-
DDs) [Bry86] are a canonical representation for boolean functions, i.e., functions
from [Bn→B]. BDDs are binary branching directed acyclic graphs where the
nodes are variables and the outgoing branches correspond to the assignment of
> and ⊥ to the variable. There is a total ordering of variables that is maintained
along any path in the graph. The graph is kept in reduced form so that if there
is a node such that both of its branches lead to the same subgraph, then the
node is eliminated.

Standard operations like negation, conjunction, disjunction, composition, and
boolean quantification, have efficient implementations using BDDs. The BDD
data structure has primarily been used for boolean equivalence checking and
symbolic model checking. The main advantage of BDDs over other representa-
tions is that checking equivalence is easy. Boolean quantification is also handled
more readily using BDDs. BDDs can also be used for SAT solving since it is
in fact a compact representation for all solutions of a boolean formula. But the
strength of BDDs is in representing boolean functions of a low communication
complexity, i.e., where it is possible to partition the variables so that there are
few dependencies between variables across the partition. BDDs have been pop-
ular for symbolic model checking [CGP99] and boolean equivalence checking.

Quantified Boolean Formulas and Transition Systems. In a propositional logic
formula, all variables are implicitly universally quantified. One obvious exten-
sion is the introduction of Boolean existential and universal quantification. The
resulting fragment is called quantified boolean formulas (QBF). This kind of
quantification can be expressed purely in propositional logic. For example, the
formula (∃p : Q) is equivalent to (Q[p 7→ >] ∨Q[p 7→ ⊥]). The language of QBF
is of course exponentially more succinct than propositional logic. The decision
procedure for QBF validity is a PSPACE-complete problem. Many interesting
problems that can be cast as interactive games can be mapped to QBF.

Finite-state transition systems can be defined in QBF. A finite state type consists
of a finite number of distinct variables over types such as booleans, scalars,
subranges, and finite arrays over a finite element type. A finite state type can
be encoded in binary form. A transition system over a finite state type that is
represented by n boolean variables then consists of an initialization predicate I
that is an n-ary boolean function, and a transition relation N that is a 2n-ary
boolean function. The nondeterministic choice between two transition relations
N1 and N2 is easily expressed as N1 ∨N2. Internal state can be hidden through

6

 16

boolean quantification. The composition (N1;N2) of two transition relations N1

and N2 can be captured as ∃y : N1(x, y) ∧N2(y, x′).

Fixpoints and Model Checking. QBF can be further extended through the ad-
dition of fixpoint operators that can capture the transitive closure of a tran-
sition relation. Given a transition relation N , the reflexive-transitive closure
of N can be written as µQ : x′ = x ∨ (∃y : N(x, y) ∧ Q(y, x′)). Similarly,
the set of states reachable from the initial set of state can be represented as
µQ : I(x)∨(∃y : Q(y)∧N(y, x)). The boolean function represented by a fixpoint
formula can be computed by unwinding the fixpoint until convergence is reached.
For this, the ROBDD representation of the boolean function is especially conve-
nient since it makes it easy to detect convergence through an equivalence test,
and to represent boolean quantification [BCM+92,McM93]. The boolean fixpoint
calculus can easily represent the temporal operators of the branching-time tem-
poral logic CTL where one can for example assert that a property always (or
eventually) holds on all (or some) computation paths leading out of a state.
The boolean fixpoint calculus can also represent different fairness constraints on
paths. The emptiness problem for Büchi automaton over infinite words can be
expressed using fairness constraints. This in turn captures the model checking
problem for linear-time temporal logics [VW86,Kur93].

Weak monadic second-order logic of a single successor (WS1S). WS1S has a
successor operation for constructing natural numbers, first-order quantification
over natural numbers, and second-order quantification over finite sets of natu-
ral numbers. WS1S is a natural formalism for many applications, particularly
for parametric systems. The logic can be used to capture interesting datatypes
such as regular expressions, lists, queues, and arrays. There is a direct mapping
between the logic and finite automata. A finite set X of natural numbers can
be represented as a bit-string where a 1 in the i’th position indicates that i is
a member of X. A formula with free set variables X1, . . . , Xn is then a set of
strings over Bn. The logical operations have automata theoretic counterparts
so that negation is complementation, conjunction is the product of automata,
and existential quantification is projection. The MONA library [EKM98] uses
an ROBDD representation for the automaton corresponding to the formula.

3 Equality and Inequality

Equality introduces some of the most significant challenges in automated rea-
soning [HO80]. Many subareas of theorem proving are devoted to equality in-
cluding rewriting, constraint solving, and unification. In this section we focus
on ground decision procedures for equality. Many theorem proving systems are
based around decision procedures for equality. The language now includes terms
which are built from variables x, and applications f(a1, . . . , an) of an n-ary func-
tion symbol f to n terms a1, . . . , an. The ground fragment can be seen as an
extension of propositional logic where the propositional atoms are of the form

7

 17

a = b, for terms a and b. The literals are now either equations a = b or disequa-
tions a 6= b. The variables in a formula are taken to be universally quantified. The
validity of a formula φ that is a propositional combination of equalities can be
decided by first transforming ¬φ into disjunctive normal form D1∨ . . .∨Dn, and
checking that each disjunct Di, which is a conjunction of literals, is refutable.
The refutation of a conjunction Di of literals can be carried out by partitioning
the terms in Di into equivalence classes of terms with respect to the equalities in
Di. If for some disequation a 6= b in Di, a and b appear in the same equivalence
class, then we have a contradiction and Di has been refuted. The original claim
φ is verified if each such disjunct Di has been refuted.

If the function symbols are all uninterpreted, then congruence closure can be
used to construct the equivalence classes corresponding to the conjunction of
literals Di. Let the set of subterms of Di be ddDiee. The initial partition P0 is the
set {{c} | c ∈ ddDiee}. When an equality of the form a = b from Di is processed,
it results in the merging of the equivalence classes corresponding to a and b. As
a result of this merge, other equivalence classes might become mergeable. For
example, one equivalence might contain f(a1, . . . , an) while the other contains
f(b1, . . . , bn), and each aj is in the same equivalence class as the corresponding bj .
The merging of equivalence classes is performed until no further mergeable pairs
of equivalence classes remain, and the partition P1 is constructed. The equalities
in Di are successively processed and the resulting partition is returned as Pm.
If for some disequality a 6= b, a and b are in the same equivalence class in Pm,
then a contradiction is returned. Otherwise, the conjunction Di is satisfiable.

Linear arithmetic. A large fraction of the subgoals that arise in verification con-
dition generation, typechecking, array-bounds checking, and constraint solving
involve linear arithmetic constraints [BW01]. Linear arithmetic equalities in n
variables have the form c0+c1∗x1+. . .+cn∗xn = 0, where the coefficients ci range
over the rationals, and the variables xi range over the rationals or reals. It is easy
to isolate a single variable, say x1, as x1 = −c0/c1−(c2/c1)∗x2−. . .−(cn/c1)∗xn.
This solved form for x1 can then be substituted into the remaining linear equa-
tions thus eliminating the variable x1. Gaussian elimination is based on the same
idea where the set of linear equations is represented by A ∗X = B, and the ma-
trix representation of the linear equations is transformed into row echelon form
in order to solve for the variables.

Linear inequalities are of the form c0 + c1 ∗ x1 + . . . + cn ∗ xn # 0, where # is
either <, ≤, >, or ≥. Note that linear inequalities, unlike equalities, are closed
under negation. Any linear equality can also be easily transformed into a pair of
inequalities. As with linear equalities, linear inequalities can also be transformed
into a form where a single variable is isolated. A pair of inequalities, x ≤ a and
x ≥ b can be resolved to obtain b ≤ a thus eliminating x. This kind of Fourier-
Motzkin elimination [DE73] can be used as a quantifier elimination procedure
to decide the first-order theory of linear arithmetic by repeatedly reducing any
quantified formula of the form ∃x : P (x) where P (x) is a conjunction of inequal-
ities, into the form P ′, where x has been eliminated. By eliminating quantifiers

8

 18

in an inside-out order while transforming universal quantification ∀x : A into
¬∃x : ¬A, we arrive at an equivalent variable-free formula that directly evalu-
ates to true or false. Linear programming techniques like Simplex [Nel81] can
also be used for solving linear arithmetic inequality constraints. Separation pred-
icates are linear inequalities of the form x−y ≤ c or x−y < c for some constant
c, and these can be decided with graph-theoretic techniques [Sho81]. This simple
class of linear inequalities is useful in model checking timed automata [ACD93].

Presburger arithmetic [Pre29] is the first-order theory of linear arithmetic over
the integers. Solving constraints over the integers is harder than over the ratio-
nals and reals. Cooper [Coo72,Opp78] gives an efficient quantifier elimination
algorithm for Presburger arithmetic. Once again, we need only consider quan-
tifiers of the form ∃x : P (x) where P (x) is a conjunction of inequalities. We
add divisibility assertions of the form k|a, where k is a positive integer. An in-
equality of the form c0 + c1 ∗ x1 + . . . + cn ∗ xn ≥ 0 can be transformed to
c1 ∗x1 ≥ −c0− c2 ∗xn− . . .− cn ∗xn, and similarly for other inequality relations.
Since we are dealing with integers, a nonstrict inequality like a ≤ b can be trans-
formed to a < b+ 1. Having isolated all occurrences of x1, we can compute the
least common multiple α1 of the coefficients corresponding to each occurrence
of xi. Now P (x1) is of the form P ′(α1 ∗ x1), and ∃x1 : P (x1) can be replaced by
∃x1 : P ′(x1)∧α1|x1. Here, P ′(x) is a conjunction of formulas of the forms: x < a,
x > b, k|x+d, and j 6 |x+e. Let A = {a | x < a ∈ P ′(x)}, B = {b | x > b ∈ P ′(x)},
K = {k | (k|x+d) ∈ P ′(x), and J = {j | (j 6 |x+ e) ∈ P ′(x)}. Let G be the least
common multiple of K∪J . If A is nonempty, then ∃x : P ′(x) can be transformed
to
∨
a∈A ∃x : a−G ≤ x < a∧P ′(x). The bounded existential quantification in the

latter formula can easily be eliminated. Essentially, if m satisfies the constraints
in K ∪ J , then so does m + r ∗ G for any integer r. Hence, if P ′(m) holds for
some m and A is nonempty, then there is an m in the interval [a−G, a) for some
a ∈ A such that P ′(m) holds. Similarly, if B is nonempty, ∃x : P ′(x) can also be
transformed to

∨
b∈B ∃x : b < x ≤ b+G∧P ′(x). If both A and B are empty, then

∃x : P ′(x) is transformed to ∃x : 0 < x ≤ G∧P ′(x). For example, the claim that
x is an even integer can be expressed as ∃u : 2 ∗u = x if we avoid the divisibility
predicate. The quantifier elimination transformation above would convert this
to u′ > x − 1 ∧ u′ < x + 1 ∧ (2|u′) which eventually yields (x > x − 1 ∧ x <
x+ 1∧2|x)∨ (x+ 1 > x−1∧x+ 1 < x+ 1∧ (2|x+ 1)). The latter formula easily
simplifies to (2|x). The claim that the sum of two even numbers is even then has
the form (∀x : ∀y : 2|x∧ 2|y ⊃ 2|(x+ y)). Converting universal quantification to
existential quantification yields ¬∃x : ∃y : 2|x∧ 2|y∧ 2 6 |(x+ y). Quantifier elim-
ination yields ¬∃x : 0 < x ≤ 2∧∃y : 0 < y ≤ 2∧ (2|x)∧ (2|y)∧ (2 6 |x+ y), which
is clearly valid. The decidability of Presburger arithmetic can also be reduced to
that of WS1S, and even though the latter theory has nonelementary complexity,
this reduction using MONA works quite efficiently in practice [SKR98].

By the unsolvability of Hilbert’s tenth problem, even the quantifier-free fragment
of nonlinear arithmetic over the integers or rationals is undecidable. However,
the first-order theory of nonlinear arithmetic over the reals and the complex

9

 19

numbers is decidable. Tarski [Tar48] gave a decision procedure for this theory.
Collins [Col75] gave an improved quantifier elimination procedure that is the
basis for a popular package called QEPCAD [CH91]. These procedures have
been successfully used in proving theorems in algebraic geometry. Buchberger’s
Gröbner basis method for testing membership in polynomial ideals has also been
successful in computer algebra and geometry theorem proving [CG01,BW01].

Constraint solving and quantifier elimination methods in linear and nonlinear
arithmetic over integers, reals, and rationals, are central to a large number of
applications of theorem proving that involve numeric constraints.

4 The Combination Problem

The application of decision procedures for individual theories is constrained by
the fact that few natural problems fall exactly within a single theory. Many
of the proof obligations that arise out of extended typechecking or verifica-
tion condition generation involve arithmetic equalities and inequalities, tuples,
arrays, datatypes, and uninterpreted function symbols. There are two basic
techniques for constructing decision procedures for checking the satisfiability of
conjunctions of literals in combinations of disjoint theories: the Nelson–Oppen
method [NO79,TH96] and the Shostak method [Sho84].

Nelson and Oppen’s Method. The Nelson–Oppen method combines decision pro-
cedures for disjoint theories by using variable abstraction to purify a formula
containing operations from a union of theories, so that the formula can then be
partitioned into subgoals that can be handled by the individual decision proce-
dures. Let B represent the formula whose satisfiability is being checked in the
union of disjoint theories θ1 and θ2. First variable abstraction is used to convert
B into B′ ∧ V , where V contains equalities of the form x = t, where x is a
fresh variable and t contains function symbols exclusively from θ1 or from θ2,
and B′ contains x renaming t. In particular, if V [B′] is the result of replacing
each occurrence of x in B′ by the corresponding t for each x = t in V , then B
must the result of repeatedly applying V to B′ and eliminating all the newly
introduced variables. Next, V ∧ B′ can be partitioned as B1 ∧ B2, where each
Bi only contains function symbols from the theory θi. Let X be the free vari-
ables that are shared between B1 and B2. Guess a partition X1, . . . , Xm on the
variables in X. Let E be an arrangement corresponding to this partition so that
E contains x = y for each pair of distinct variables x, y in some Xj , and u 6= v
for each pair of variables u, v, such that u ∈ Xj , v ∈ Xk for j 6= k. Check if
E ∧B1 is satisfiable in θ1 and E ∧B2 is satisfiable in θ2. If that is the case, then
B is satisfiable in θ1 ∪ θ2, provided θ1 and θ2 are stably infinite. A theory θ is
stably infinite if whenever a formula is θ-satisfiable (satisfiable in a θ-model), it
is θ-satisfiable in an infinite model.

Shostak’s Method. The Nelson–Oppen combination is a way of combining black
box decision procedures. Shostak’s method is an optimization of the Nelson–

10

 20

Oppen combination for a restricted class of equational theories. A theory θ is said
to be canonizable if there is a canonizer σ such that the equality a = b is valid in θ
iff σ(a) ≡ σ(b). A theory θ is said to be solvable if there is an operation solve such
that solve(a = b) returns a set S of equalities {x1 = t1, . . . , xn = tn} equivalent
in some sense to a = b, where each xi occurs in a = b but not in tj for 1 ≤ i, j ≤ n.
A Shostak theory is one that is canonizable and solvable. Shostak’s combination
method can be used to combine one or more Shostak theories with the theory of
equality over uninterpreted terms. The method essentially maintains a set S of
solutions S0, . . . , SN , where each set Si contains equalities of the form x = t for
some term t in θi. The theory θ0 is used for the uninterpreted function symbols.
Two variables x and y are said to be merged in Si if x = t and y = t are both in
Si. It is possible to define a global canonical form S[[a]] for a term a with respect
to the solution state S using the individual canonizers σi.

Shostak’s original algorithm [Sho84] and its proof were both incorrect. The al-
gorithm, as corrected by the author and Harald Ruess [RS01,SR02], checks the
validity of a sequent T ` c = d. It does this by processing each equality a = b
into its solved form. If S is the current solution state, then an unprocessed
equality a = b in T is processed by first transforming it to a′ = b′, where
a′ = S[[a]] and b′ = S[[b]]. The equality a′ = b′ is variable abstracted and the
variable abstraction equalities x = t are added to the solution Si, where t is a
term in the theory θi. The algorithm then repeatedly reconciles the solutions
Si so that whenever two variables x and y are merged in Si but not in Sj , for
i 6= j, then they are merged in Sj by solving tx = ty in θj , for x = tx and
y = ty in Sj , and composing the solution with Sj to obtain a new solution set
Sj . When all the input equalities from T have been processed and we have the
resulting solution state S, we check if S[[c]] = S[[d]]. A conjunction of literals∧m
i=1 ai = bi ∧

∧n
j=1 cj 6= dj is satisfiable iff S 6= ⊥ and S[[cj]] 6≡ S[[dj]], for each

j, 1 ≤ j ≤ n, where S = process({a1 = b1, . . . , am = bm}).

Ground Satisfiability. The Nelson–Oppen and Shostak decision procedures
check the satisfiability of conjunctions of literals drawn from a combination of
theories. These procedures can be extended to handle propositional combina-
tions of atomic formulas by transforming these formulas to disjunctive normal
form. This method can be inefficient when the propositional case analysis in-
volved is heavy. It is usually more efficient to combine a SAT solver with a
ground decision procedure [BDS02,dMRS02]. There are various ways in which
such a combination can be executed. Let φ be the formula whose satisfiability
is being checked. Let L be an injective map from fresh propositional variables
to the atomic subformulas of φ such that L−1[φ] is a propositional formula. We
can use a SAT solver to check that L−1[φ] is satisfiable, but the resulting truth
assignment, say l1∧. . .∧ln, might be spurious, that is L[l1∧. . .∧ln] might not be
ground-satisfiable. If that is the case, we can repeat the search with the added
lemma (¬l1 ∨ . . .∨¬ln) and invoke the SAT solver on (¬l1 ∨ . . .∨¬ln)∧L−1[φ].
This ensures that the next satisfying assignment returned is different from the
previous assignment that was found to be ground-unsatisfiable. The lemma that
is added can be minimized to find the minimal unsatisfiable set of literals li.

11

 21

This means that the lemma that is added is smaller, and the pruning of spuri-
ous assignments is more effective. The ground decision procedure can be also be
used to precompute a set Λ of lemmas (clauses) of the form l1 ∨ . . . ∨ ln, where
¬L[l1] ∧ . . .¬L[ln] is unsatisfiable according to the ground decision procedures.
The SAT solver can then be reinvoked with Λ ∧ L−1[φ].

A tighter integration of SAT solvers and ground decision procedures would allow
the decision procedures to check the consistency of the case analysis during
an application of splitting in the SAT solver and avoid cases that are ground-
unsatisfiable. Through a tighter integration, it would also be possible to resume
the SAT solver with the added conflict information without starting the SAT
solving process from scratch. We address the challenge of integrating inference
procedures below.

Applications. Ground decision procedures, ground satisfiability, and quantifier
elimination have many applications.

Symbolic Execution: Given a transition system, symbolic execution is the
process of computing preconditions or postconditions of the transition sys-
tem with respect to an assertion. For example, the strongest postcondi-
tion of an assertion p with respect to a transition N is the assertion
λs : ∃s0 : p(s0) ∧ N(s0, s). For certain choices of p and N , this assertion
can be computed by means of a quantifier elimination. This is useful in
analyzing timed and hybrid systems [ACH+95].

Infinite-State Bounded Model Checking: Bounded model checking checks
for the existence of counterexamples of length upto a bound k for a given
temporal property. With respect to certain temporal properties, it is possible
to reduce the bounded model checking problem for such systems to a ground
satisfiability problem [dMRS02].

Abstraction and Model Checking: The early work on abstraction
in the context of model checking was on reducing finite-state sys-
tems to smaller finite-state systems, i.e., systems with fewer possible
states [Kur93,CGL92,LGS+95]. Graf and Säıdi [GS97] were the first to
consider the use of a theorem prover for reducing (possibly) infinite-state
systems to finite-state (hence, model-checkable) form. Their technique of
predicate abstraction constructs an abstract counterpart of a concrete tran-
sition system where the truth values of certain predicates over the con-
crete state space are simulated by boolean variables. Data abstraction
replaces a variable over an infinite state space by one over a finite do-
main. Predicate and data abstraction based on theorem proving are widely
used [BLO98b,CU98,DDP99,SS99,BBLS00,CDH+00,TK02,HJMS02,FQ02].
The finite-state abstraction can exhibit spurious counterexamples that are
not reproducible on the concrete system. Ground decision procedures are
also useful here for detecting spurious counterexamples and suggesting re-
finements to the abstraction predicates [BLO98a,SS99,DD01].

Software Engineering: Ground decision procedures are central to a number
of analysis tools for better engineered software including array-bounds check-

12

 22

ing, extended static checking [DLNS98], typechecking [SO99], and static
analysis [BMMR01,Pug92].

5 Challenges

We have enumerated some of the progress in developing, integrating, and deploy-
ing various inference procedures. A great many challenges remain. We discuss a
few of these below.

The Complexity Challenge. Many decision procedures are of exponential, super-
exponential, or non-elementary complexity. However, this complexity often does
not manifest itself on practical examples. Modern SAT solvers can solve very
large practical problems, but they can also run aground on small instances of
simple challenges like the propositional pigeonhole principle. MONA deals with
a logic that is known to have a non-elementary lower bound, yet it performs
quite well in practice. The challenge here is to understand the ways in which one
can overcome complexity bounds on the problems that arise in practice through
heuristic or algorithmic means.

The Theory Challenge. Inference procedures are hard to build, extend, and main-
tain. The past experience has been that good theory leads to simpler decision
procedures with greater efficiency. A well-developed theory can also help devise
uniform design patterns for entire classes of decision procedures. Such design
patterns can contribute to both the efficiency and modularity of these proce-
dures. Methods derived by specializing general-purpose methods like resolution
and rewriting can also simplify the construction of decision procedures.

The Modularity Challenge. As we have already noted, inference procedures need
rich programmer interfaces (APIs) [BM86,FORS01]. Boyer and Moore [BM86]
write:

. . . the black box nature of the decision procedure is frequently destroyed
by the need to integrate it. The integration forces into the theorem prover
much knowledge of the inner workings of the procedure and forces into
the procedure many features that are unnecessary when the problem is
considered in isolation.

For example, a ground decision procedure can be used in an online manner
so that atomic formulas are added to a context incrementally, and claims are
tested against the context. The API should include operations for asserting and
retracting information, testing claims, and for creating, deleting, and browsing
contexts. The decision procedures might need to exchange information with other
inference procedures such as a rewriter, typechecker, or an external constraint
solver. We already saw how the desired interaction between ground decision
procedures and SAT solvers was such that neither of these could be treated as
a black box procedure.

13

 23

The modularity challenge is a significant one. Butler Lampson has ar-
gued that software components have always failed at low levels of
granularity (see http://research.microsoft.com/users/blampson/Slides/
ReusableComponentsAbstract.htm). He says that successful software compo-
nents are those at the level of a database, a compiler, or a theorem prover,
but not decision procedures, constraint solvers, or unification procedures. For
interoperation between inference components, we also need compatible logics,
languages, and term and proof representations.

The Integration Challenge. The availability of good inference components is a
prerequisite for integration, but we also need to find effective ways of combining
these components in complementary ways. The combination of decision proce-
dures with model checking in predicate and data abstraction is a case where
such a complementary integration is remarkably effective. Other such examples
include the combination of unification/matching procedures and constraint solv-
ing, and typechecking and ground decision procedures.

The Verification Challenge. How do we know that our inference procedures
are sound? This question is often asked by those who wish to apply inference
procedures in contexts where a high level of manifest assurance is required. This
question has been addressed in a number of ways. The LCF approach [GMW79]
requires inference procedures to be constructed as tactics that generate a fully
expanded proof in terms of low level inferences when applied. Proof objects
have also been widely used as a way of validating inference procedures and
securing mobile code [Nec97]. Reflection [Wey80,BM81] is a way of reasoning
about the metatheory of a theory within the theory itself. The difficult tradeoff
with reflection is that the theory has to be simple in order to be reasoned about,
but rich enough to reason with. The verification of decision procedures is actually
well within the realm of feasible, and recently, there have been several successful
attempts in this direction [Thé98,FS02].

6 Conclusions

We have argued for a reappraisal of Hao Wang’s programme [Wan60b,Wan60a]
of inferential analysis as a paradigm for automated reasoning. The key element
of this paradigm is the use of problem-driven combinations of sophisticated and
efficient low-level decision procedures. Such an approach runs counter to the
traditional thinking in automated reasoning which is centered around uniform
proof search procedures. Similar ideas are also central to the automated reason-
ing schools of Bledsoe [Ble77] and Boyer and Moore [BM79,BM86].

The active use of decision procedures in automated reasoning began with the
west-coast theorem proving approach pioneered by Boyer and Moore [BM79],
Shostak [SSMS82], and Nelson and Oppen [LGvH+79,NO79]. The PVS system
is in this tradition [ORS92,Sha01], as are STeP [MT96], SIMPLIFY [DLNS98],
and SVC [BDS00].

14

 24

In recent years there has been a flurry of interest in the development of verifica-
tion tools that rely quite heavily on sophisticated decision procedures. The qual-
ity and efficiency of many of these decision procedures is impressive. The underly-
ing theory is also advancing rapidly [Bjø99,Tiw00]. Such theoretical advances will
make it easier to construct correct decision procedures and integrate them more
easily with other inference mechanisms. Contrary to the impression that decision
procedures are black boxes, they need rich interfaces [BM86,FORS01,GNTV02]
in order to be deployed most efficiently. The theory, construction, integration,
verification, and deployment of inference procedures is likely to be a fertile source
of challenges for automated reasoning in mathematically rich domains.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense
real-time. Information and Computation, 104(1):2–34, May 1993.

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, 138(1):3–34, 6 February
1995.

[BBLS00] Kai Baukus, Saddek Bensalem, Yassine Lakhnech, and Karsten Stahl. Ab-
stracting WS1S systems to verify parameterized networks. In Susanne
Graf and Michael Schwartzbach, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2000), number 1785 in Lecture
Notes in Computer Science, pages 188–203, Berlin, Germany, March 2000.
Springer-Verlag.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, June 1992.

[BDS00] Clark W. Barrett, David L. Dill, and Aaron Stump. A framework for
cooperating decision procedures. In David McAllester, editor, Automated
Deduction—CADE-17, volume 1831 of Lecture Notes in Artificial Intelli-
gence, pages 79–98, Pittsburgh, PA, June 2000. Springer-Verlag.

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability
of first-order formulas by incremental translation to SAT. In Computer-
Aided Verification, CAV ’02, Lecture Notes in Computer Science. Springer-
Verlag, July 2002.

[BG01] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In
Robinson and Voronkov [RV01], pages 19–99.

[BGG97] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision
Problem. Perspectives in Mathematical Logic. Springer, 1997.

[Bjø99] Nikolaj Bjørner. Integrating Decision Procedures for Temporal Verification.
PhD thesis, Stanford University, 1999.

[Ble77] W. W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence,
9:1–36, 1977.

[BLO98a] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. Computing abstrac-
tions of infinite state systems compositionally and automatically. In Hu
and Vardi [HV98], pages 319–331.

15

 25

[BLO98b] Saddek Bensalem, Yassine Lakhnech, and Sam Owre. InVeSt: A tool for
the verification of invariants. In Hu and Vardi [HV98], pages 505–510.

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, NY, 1979.

[BM81] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and
using them efficiently as new proof procedures. In R. S. Boyer and J S.
Moore, editors, The Correctness Problem in Computer Science. Academic
Press, London, 1981.

[BM86] R. S. Boyer and J S. Moore. Integrating decision procedures into heuristic
theorem provers: A case study with linear arithmetic. In Machine Intelli-
gence, volume 11. Oxford University Press, 1986.

[BMMR01] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate
abstraction of C programs. In Proceedings of the SIGPLAN ’01 Conference
on Programming Language Design and Implementation, 2001, pages 203–
313. ACM Press, 2001.

[Bry86] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[BW01] Alexander Bockmayr and Volker Weispfenning. Solving numerical con-
straints. In Robinson and Voronkov [RV01], pages 751–742.

[CDH+00] James Corbett, Matthew Dwyer, John Hatcliff, Corina Pasareanu, Robby,
Shawn Laubach, and Hongjun Zheng. Bandera: Extracting finite-state
models from Java source code. In 22nd International Conference on Soft-
ware Engineering, pages 439–448, Limerick, Ireland, June 2000. IEEE Com-
puter Society.

[CG01] Shang-Ching Chou and Xiao-Shan Gao. Automated reasoning in geometry.
In Robinson and Voronkov [RV01], pages 707–749.

[CGL92] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstrac-
tion. In Nineteenth Annual ACM Symposium on Principles of Programming
Languages, pages 343–354, 1992.

[CGP99] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[CH91] G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition.
Journal of Symbolic Computation, 12(3):299–328, 1991.

[Col75] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Second GI Conference on Automata Theory
and Formal Languages, number 33 in Lecture Notes in Computer Science,
pages 134–183, Berlin, 1975. Springer-Verlag.

[Coo72] D. C. Cooper. Theorem proving in arithmetic without multiplication. In
Machine Intelligence 7, pages 91–99. Edinburgh University Press, 1972.

[CU98] M. A. Colón and T. E. Uribe. Generating finite-state abstractions of re-
active systems using decidion procedures. In Hu and Vardi [HV98], pages
293–304.

[Dav57] M. Davis. A computer program for Presburger’s algorithm. In Sum-
maries of Talks Presented at the Summer Institute for Symbolic Logic, 1957.
Reprinted in Siekmann and Wrightson [SW83], pages 41–48.

[Dav83] M. Davis. The prehistory and early history of automated deduction. In
Siekmann and Wrightson [SW83], pages 1–28.

[DD01] Satyaki Das and David L. Dill. Successive approximation of abstract tran-
sition relations. In Annual IEEE Symposium on Logic in Computer Sci-
ence01, pages 51–60. The Institute of Electrical and Electronics Engineers,
2001.

16

 26

[DDP99] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In Nicolas Halbwachs and Doron Peled, editors, Computer-
Aided Verification, CAV ’99, volume 1633 of Lecture Notes in Computer
Science, pages 160–171, Trento, Italy, July 1999. Springer-Verlag.

[DE73] George B. Dantzig and B. Curtis Eaves. Fourier-Motzkin elimination and
its dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962. Reprinted
in Siekmann and Wrightson [SW83], pages 267–270, 1983.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. Technical Report 159, COMPAQ Systems Re-
search Center, 1998.

[dMRS02] Leonardo de Moura, Harald Rueß, and Maria Sorea. Lazy theorem proving
for bounded model checking over infinite domains. In A. Voronkov, editor,
International Conference on Automated Deduction (CADE’02), Lecture
Notes in Computer Science, Copenhagen, Denmark, July 2002. Springer-
Verlag.

[DP60] M. Davis and H. Putnam. A computing procedure for quantification theory.
JACM, 7(3):201–215, 1960.

[EKM98] Jacob Elgaard, Nils Klarlund, and Anders Möller. Mona 1.x: New tech-
niques for WS1S and WS2S. In Hu and Vardi [HV98], pages 516–520.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Can-
onization and Solving. In G. Berry, H. Comon, and A. Finkel, editors,
Computer-Aided Verification, CAV ’2001, volume 2102 of Lecture Notes
in Computer Science, pages 246–249, Paris, France, July 2001. Springer-
Verlag.

[FQ02] Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software ver-
ification. In ACM Symposium on Principles of Programming Languages02,
pages 191–202. Association for Computing Machinery, January 2002.

[FS02] Jonathan Ford and Natarajan Shankar. Formal verification of a combina-
tion decision procedure. In A. Voronkov, editor, Proceedings of CADE-19,
Berlin, Germany, 2002. Springer-Verlag.

[Gil60] P. C. Gilmore. A proof method for quantification theory: Its justification
and realization. IBM Journal of Research and Development, 4:28–35, 1960.
Reprinted in Siekmann and Wrightson [SW83], pages 151–161, 1983.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[GNTV02] Enrico Giunchiglia, Massimo Narizzano, Armando Tacchella, and Moshe Y.
Vardi. Towards an efficient library for SAT: a manifesto. To appear, 2002.

[GS97] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In
Conference on Computer Aided Verification CAV’97, LNCS 1254, Springer
Verlag, 1997.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In ACM Symposium on Principles of Programming Lan-
guages02, pages 58–70. Association for Computing Machinery, January
2002.

[HO80] G. Huet and D. C. Oppen. Equations and rewrite rules: a survey. In
R. Book, editor, Formal Language Theory: Perspectives and Open Prob-
lems, pages 349–405. Academic Press, ny, 1980.

17

 27

[HV98] Alan J. Hu and Moshe Y. Vardi, editors. Computer-Aided Verification,
CAV ’98, volume 1427 of Lecture Notes in Computer Science, Vancouver,
Canada, June 1998. Springer-Verlag.

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach, volume 3 of Advances in Formal Methods.
Kluwer, 2000.

[Kur93] R.P. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
Princeton University Press, Princeton, NJ, 1993.

[LGS+95] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:11–44, 1995.

[LGvH+79] D. C. Luckham, S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne,
D. C. Oppen, W. Polak, and W. L. Scherlis. Stanford Pascal Verifier user
manual. CSD Report STAN-CS-79-731, Stanford University, Stanford, CA,
March 1979.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[Min63] Marvin Minsky. Steps toward artificial intelligence. In E. A. Feigenbaum
and J. Feldman, editors, Computers and Thought. McGraw-Hill Book Com-
pany, New York, 1963.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff: Engineering an efficient SAT solver. In Design
Automation Conference, pages 530–535, 2001.

[MSS99] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for proposi-
tional satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999.

[MT96] Zohar Manna and The STeP Group. STeP: Deductive-algorithmic verifi-
cation of reactive and real-time systems. In Rajeev Alur and Thomas A.
Henzinger, editors, Computer-Aided Verification, CAV ’96, volume 1102 of
Lecture Notes in Computer Science, pages 415–418, New Brunswick, NJ,
July/August 1996. Springer-Verlag.

[Nec97] George C. Necula. Proof-carrying code. In 24th ACM Symposium on Prin-
ciples of Programming Languages, pages 106–119, Paris, France, January
1997. Association for Computing Machinery.

[Nel81] G. Nelson. Techniques for program verification. Technical Report CSL-81-
10, Xerox Palo Alto Research Center, Palo Alto, Ca., 1981.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[NSS57] A. Newell, J. C. Shaw, and H. A. Simon. Empirical explorations with the
logic theory machine: A case study in heuristics. In Proc. West. Joint
Comp. Conf., pages 218–239, 1957. Reprinted in Siekmann and Wright-
son [SW83], pages 49–73, 1983.

[Opp78] Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger
arithmetic. Journal of Computer and System Sciences, 16:323–332, 1978.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

18

 28

[ORSvH95] Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke.
Formal verification for fault-tolerant architectures: Prolegomena to the de-
sign of PVS. IEEE Transactions on Software Engineering, 21(2):107–125,
February 1995.

[Pos21] E. L. Post. Introduction to a general theory of elementary propositions.
American Journal of Mathematics, 43:163–185, 1921. Reprinted in [vH67,
pages 264–283].

[Pra60] D. Prawitz. An improved proof procedure. Theoria, 26:102–139, 1960.
Reprinted in Siekmann and Wrightson [SW83], pages 162–201, 1983.

[Pre29] M. Presburger. Uber die vollständigkeit eines gewissen systems der arith-
metik ganzer zahlen, in welchem die addition als einzige operation hervor-
tritt. Compte Rendus du congrés Mathématiciens des Pays Slaves, pages
92–101, 1929.

[Pug92] W. Pugh. A practical algorithm for exact array dependence analysis. Com-
munications of the ACM, 35(8):102–114, 1992.

[Rab78] Michael O. Rabin. Decidable theories. In Jon Barwise, editor, Handbook
of Mathematical Logic, volume 90 of Studies in Logic and the Foundations
of Mathematics, chapter C8, pages 595–629. North-Holland, Amsterdam,
Holland, 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
JACM, 12(1):23–41, 1965. Reprinted in Siekmann and Wrightson [SW83],
pages 397–415.

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In 16th An-
nual IEEE Symposium on Logic in Computer Science, pages 19–28, Boston,
MA, July 2001. IEEE Computer Society.

[RV01] A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning.
Elsevier Science, 2001.

[Sha01] Natarajan Shankar. Using decision procedures with a higher-order logic. In
Theorem Proving in Higher Order Logics: 14th International Conference,
TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, pages
5–26, Edinburgh, Scotland, September 2001. Springer-Verlag. Available at
ftp://ftp.csl.sri.com/pub/users/shankar/tphols2001.ps.gz.

[Sho81] Robert E. Shostak. Deciding linear inequalities by computing loop residues.
Journal of the ACM, 28(4):769–779, October 1981.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[SKR98] T. R. Shiple, J. H. Kukula, and R. K. Ranjan. A comparison of Presburger
engines for EFSM reachability. In Hu and Vardi [HV98], pages 280–292.

[SO99] Natarajan Shankar and Sam Owre. Principles and pragmatics of subtyping
in PVS. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends
in Algebraic Development Techniques, WADT ’99, volume 1827 of Lec-
ture Notes in Computer Science, pages 37–52, Toulouse, France, September
1999. Springer-Verlag.

[SR02] N. Shankar and H. Rueß. Combining Shostak theories. In International
Conference on Rewriting Techniques and Applications (RTA ‘02), Lecture
Notes in Computer Science. Springer-Verlag, July 2002. Invited Paper.

[SS99] Hassen Säıdi and Natarajan Shankar. Abstract and model check while you
prove. In Computer-Aided Verification, CAV ’99, Trento, Italy, July 1999.

[SS00] Mary Sheeran and Gunnar St̊almarck. A tutorial on St̊almarck’s proof
procedure for propositional logic. Formal Methods in Systems Design,
16(1):23–58, January 2000.

19

 29

[SSMS82] R. E. Shostak, R. Schwartz, and P. M. Melliar-Smith. STP: A mechanized
logic for specification and verification. In D. Loveland, editor, 6th Interna-
tional Conference on Automated Deduction (CADE), volume 138 of Lecture
Notes in Computer Science, New York, NY, 1982. Springer-Verlag.

[SW83] J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Classical
Papers on Computational Logic, Volumes 1 & 2. Springer-Verlag, 1983.

[Tar48] A. Tarski. A Decision Method for Elementary Algebra and Geometry. Uni-
versity of California Press, 1948.

[TH96] Cesare Tinelli and Mehdi Harandi. A new correctness proof of the Nelson-
Oppen combination procedure. In Frans Baader and Klaus U. Schulz,
editors, Frontiers of Combining Systems: First International Workshop,
volume 3 of Applied Logic Series, pages 103–119, Munich, Germany, March
1996. Kluwer.

[Thé98] Laurent Théry. A certified version of Buchberger’s algorithm. In H. Kirch-
ner and C. Kirchner, editors, Proceedings of CADE-15, number 1421 in
Lecture Notes in Artificial Intelligence, pages 349–364, Berlin, Germany,
July 1998. Springer-Verlag.

[Tiw00] Ashish Tiwari. Decision Procedures in Automated Deduction. PhD thesis,
State University of New York at Stony Brook, 2000.

[TK02] Ashish Tiwari and Gaurav Khanna. Series of abstractions for hybrid au-
tomata. In C.J. Tomlin and M.R. Greenstreet, editors, Hybrid Systems:
Computation and Control, 5th International Workshop, HSCC 2002, vol-
ume 2289 of Lecture Notes in Computer Science, pages 465–478, Stanford,
CA, March 2002. Springer-Verlag.

[vH67] J. van Heijenoort, editor. From Frege to Gödel: A Sourcebook of Math-
ematical Logic, 1879–1931. Harvard University Press, Cambridge, MA,
1967.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In Proceedings 1st
Annual IEEE Symp. on Logic in Computer Science, pages 332–344. IEEE
Computer Society Press, 1986.

[Wan60a] H. Wang. Proving theorems by pattern recognition — I. Communica-
tions of the ACM, 3(4):220–234, 1960. Reprinted in Siekmann and Wright-
son [SW83], pages 229–243, 1983.

[Wan60b] Hao Wang. Toward mechanical mathematics. IBM Journal, 4:2–22, 1960.
[Wan63] H. Wang. Mechanical mathematics and inferential analysis. In P. Braffort

and D. Hershberg, editors, Computer Programming and Formal Systems.
North-Holland, 1963.

[Wey80] Richard W. Weyhrauch. Prolegomena to a theory of mechanized formal
reasoning. Artificial Intelligence, 13(1 and 2):133–170, April 1980.

[Zha97] Hantao Zhang. SATO: An efficient propositional prover. In Conference on
Automated Deduction, pages 272–275, 1997.

20

 30

Deonstruting Shostak�Appears in Pro. of IEEE LICS 2001 IEEE PressHarald Rue� and Natarajan ShankarComputer Siene LaboratorySRI InternationalMenlo Park CA 94025 USAfruess,shankarg�sl.sri.omPhone: (650)859-5272; Fax: (650)859-2844AbstratDeision proedures for equality in a ombination oftheories are at the ore of a number of veri�ation sys-tems. Shostak's deision proedure for equality in theombination of solvable and anonizable theories hasbeen around for nearly two deades. Variations of thisdeision proedure have been implemented in a num-ber of systems inluding STP, Ehdm, PVS, STeP, andSVC. The algorithm is quite subtle and a orretnessargument for it has remained elusive. Shostak's algo-rithm and all previously published variants of it yieldinomplete deision proedures. We desribe a variantof Shostak's algorithm along with proofs of termina-tion, soundness, and ompleteness.1 IntrodutionIn 1984, Shostak [Sho84℄ published a deision pro-edure for the quanti�er-free theory of equality overuninterpreted funtions ombined with other theoriesthat are anonizable and solvable. Suh algorithmsdeide statements of the form T ` a = b, where Tis a olletion of equalities, and T , a, and b ontain amixture of interpreted and uninterpreted funtion sym-bols. This lass of statements inludes a large frationof the proof obligations that arise in veri�ation inlud-ing those involving extended typeheking, veri�ationonditions generated from Hoare triples, and indutivetheorem proving. Shostak's proedure is at the ore ofseveral veri�ation systems inluding STP [SSMS82℄,Ehdm [EHD93℄, PVS [ORS92℄, STeP [MT96, Bj�99℄,and SVC [BDL96℄. The soundness of Shostak's algo-rithm is reasonably straightforward, but its omplete-�This work was supported by SRI International, and by NSFGrant CCR-0082560, DARPA/AFRL Contrat F33615-00-C-3043, and NASA Contrat NAS1-0079.

ness has steadfastly resisted proof. The proof givenby Shostak [Sho84℄ is seriously awed. Despite its sig-ni�ane and popularity, Shostak's original algorithmand its subsequent variations [CLS96, BDL96, Bj�99℄are all inomplete and potentially nonterminating. Weexplain the ideas underlying Shostak's deision proe-dure by presenting a orret version of the algorithmalong with rigorous proofs for its orretness.If the terms in a onjeture of the form T `a = b are onstruted solely from variables and un-interpreted funtion symbols, then ongruene lo-sure [NO80, Sho78, DST80, CLS96, Kap97, BRRT99℄an be used to partition the subterms into equivalenelasses respeting T and ongruene. For example,when ongruene losure is applied tof3(x) = f(x) ` f5(x) = f(x);the equivalene lasses generated bythe anteedent equality are fxg; ff(x); f3(x); f5(x)g;and ff2(x); f4(x)g. This partition learly validates theonlusion f5(x) = f(x).In pratie, a onjeture T ` a = b usually on-tains a mixture of uninterpreted and interpreted fun-tion symbols. Semantially, uninterpreted funtionsare unonstrained, whereas interpreted funtion areonstrained by a theory, i.e., a losure ondition withrespet to onsequene on a set of equalities. An ex-ample of suh an assertion isf(x�1)�1 = x+1; f(y)+1 = y�1; y+1 = x ` false ;where +, �, and the numerals are from the theory oflinear arithmeti, false is an abbreviation for 0 = 1,and f is an uninterpreted funtion symbol. The on-tradition here annot be derived solely by ongruenelosure or linear arithmeti. Linear arithmeti is usedto show that x� 1 = y so that f(x� 1) = f(y) followsby ongruene. Linear arithmeti an then be used toshow that x+ 2 = y � 2 whih ontradits y + 1 = x.
 31

Nelson and Oppen [NO79℄ showed how deision pro-edures for disjoint equational theories ould be om-bined. Sine linear arithmeti and uninterpreted equal-ity are disjoint, this method an be applied to theabove example. First, variable abstration is usedto obtain a theory-wise partition of the term uni-verse, i.e., the subterms of T , a, and b, in a on-jeture T ` a = b. The uninterpreted equality the-ory Q then onsists of the terms ff(u); f(y); w; zg andthe equalities fw = f(u); z = f(y)g, and the lineararithmeti theory L onsists of the terms fu; x; y; x�1; w � 1; x + 1; z + 1; y � 1; y + 1g and the equalitiesfu = x � 1; w � 1 = x + 1; z + 1 = y � 1; y + 1 = xg.The key observation is that one the terms and equal-ities have been partitioned using variable abstration,the two theories L and Q need exhange only equalitiesbetween variables. Thus, linear arithmeti an be usedto derive the equality u = y, from whih ongruenelosure derives w = z, and the ontradition then fol-lows from linear arithmeti. Sine the term universeis �xed in advane, there are only a bounded numberof equalities between variables so that the propagationof information between the deision proedures mustultimately onverge.The Nelson-Oppen ombination proedure has somedisadvantages. The individual deision proeduresmust arry out their own equality propagation and theommuniation of equalities between deision proe-dures an be expensive. The number of equalities isquadrati in the size of the term universe, and eahlosure operation an itself be linear in the size of theterm universe.Shostak's algorithm tries to gain eÆieny by main-taining and propagating equalities within a single on-gruene losure data struture. Equalities involvinginterpreted symbols ontain more information thanuninterpreted equalities. For example, the equalityy+1 = x annot be proessed by merely plaing y+1and x in the same equivalene lass. This equalityalso implies that y = x � 1, y � x = �1, x � y = 1,y + 3 = x+ 2, and so on. In order to avoid proessingall these variations on the given equality, Shostak re-strits his attention to solvable theories where an equal-ity of the form y + 1 = x an be solved for x to yieldthe solution x = y + 1. If the theories onsidered arealso anonizable, then there is a anonizer � suh thatwhenever an equality a = b is valid, then �(a) � �(b),where � represents syntati equality. A anonizer forlinear arithmeti an be de�ned to plae terms into anordered sum-of-monomials form. One a solved formsuh as x = y+1 has been obtained, all the other on-sequenes a = b of this equality an be obtained by�(a0) = �(b0) where a0 and b0 are the results of sub-

stituting the solution for x into a and b, respetively.For example, substituting the solution into y = x � 1yields y = y + 1� 1, and the subsequent anonizationstep yields y = y.The notion of a solvable and anonizable theory isextended to equalities involving a mix of interpretedand uninterpreted symbols by treating uninterpretedterms as variables. For the onjeture,f(x�1)�1 = x+1; f(y)+1 = y�1; y+1 = x ` false ;Shostak's algorithm would solve the equality f(x�1)�1 = x+ 1 as f(x� 1) = x+ 2, the equality f(y) + 1 =y � 1 as f(y) = y � 2, and y + 1 = x as x = y +1. Now, f(x � 1) and f(y) are ongruent beause theanonial form for x � 1 obtained after substitutingthe solution x = y + 1 is y. By ongruene losure,the equivalene lasses of f(x � 1) and f(y) have tobe merged. In Shostak's original algorithm the urrentrepresentatives of these equivalene lasses, namely x+2 and y � 2 are merged. The resulting equality x +2 = y � 2 is �rst solved to yield x = y � 4. This isinorret beause we already have a solution for x asx = y+1 and x should therefore have been eliminated.The new solution x = y�4 ontradits the earlier one,but this ontradition goes undeteted by Shostak'salgorithm. This example an be easily adapted to shownontermination. Considerf(v) = v; f(u) = u� 1; u = v ` false :The merging of u and v here leads to the detetion ofthe ongruene between f(u) and f(v). This leads tosolving of u� 1 = v as u = v + 1. Now, the algorithmmerges v and v+1. Sine v ours in v+1, this ausesv + 1 to be merged with v + 2, and so on.An earlier paper by Cyrluk, Linoln, andShankar [CLS96℄ gave an explanation (with minor or-retions) of Shostak's algorithm for ongruene lo-sure and its extension to interpreted theories. Thoughproofs of orretness for the ombination algorithm arebriey skethed, the algorithm presented there is bothinomplete and nonterminating. Other published vari-ants of Shostak's algorithm used in SVC [BDL96℄ andSTeP [Bj�99℄ inherit these problems.In this paper, we present an algorithm that �xes theinompleteness and nontermination in earlier versionsof Shostak's algorithms. In the above example, the in-ompleteness is �xed by substituting the solution forx into the terms representing the di�erent equivalenelasses. Thus, when f(x� 1) and f(y) are deteted tobe ongruent, their equivalene lasses are representedby y+3 and y�2, respetively. The resulting equalityy+3 = y�2 easily yields a ontradition. The nonter-mination is �xed by ensuring that no new mergeable
 32

terms, suh as v+2, are reated during the proessingof an axiom in T . Our algorithm is presented as a sys-tem of transformations on a set of equalities in order toapture the key insights underlying its orretness. Weoutline rigorous proofs for the termination, soundness,and ompleteness of this proedure. The algorithmas presented here emphasizes logial larity over eÆ-ieny, but with suitable optimizations and data stru-tures, it an serve as the basis for an eÆient imple-mentation. SRI's ICS (Integrated Canonizer/Solver)deision proedure pakage [FORS01℄ is diretly basedon the algorithm studied here.Setion 2 introdues the theory of equality, whihis augmented in Setion 3 with funtion symbols froma anonizable and solvable theory. Setion 3 also in-trodues the basi building bloks for the deisionproedure. The algorithm itself is desribed in Se-tion 4 along with some example hand-simulations. Theproofs of termination, soundness, and ompleteness areoutlined in Setion 5.2 BakgroundWith respet to a signature onsisting of a setof funtion symbols F and a set of variables V , aterm is either a variable x from V or an appliationf(a1; : : : ; an) of an n-ary funtion symbol f from Fto n terms a1; : : : ; an, where 0 � n. The metavari-able onventions are that u, v, x, y, and z range overvariables, and a, b, , d, and e range over terms. Themetavariables R, S, and T , range over sets of equali-ties. The metatheoreti assertion a � b indiates thata and b are syntatially idential terms. Let vars(a),vars(a = b), and vars(T) return the variables our-ring in a term a, an equality a = b, and a set of equal-ities T , respetively. The operation ddaee is de�ned toreturn the set of all subterms of a.Some of the funtion symbols are interpreted , i.e.,they have a spei� interpretation in some given theory� , while the remaining funtion symbols are uninter-preted, i.e., an be assigned arbitrary interpretations.A term f(a1; : : : ; an) is interpreted (uninterpreted) iff is interpreted (uninterpreted). A term e is non-interpreted if it is either a variable or an uninterpretedterm. We say that a term a ours interpreted in a terme if there is an ourrene of a in e that is not prop-erly within an uninterpreted subterm of e. Likewise, aours uninterpreted in e if a is a proper subterm of anuninterpreted subterm of e. solvables(a) denotes theset of outermost non-interpreted subterms of a, i.e.,

those that do not our uninterpreted in a.solvables(f (a1 ; : : : ; an)) = [i solvables(ai);if f is interpretedsolvables(a) = fag; otherwiseThe theory of equality deals with sequents of theform T ` a = b. We will insist that these sequents besuh that vars(a = b) � vars(T). The proof theoryfor equality is given by the following inferene rules.1. Axiom: T ` a = b , for a = b 2 T .2. Reexivity: T ` a = a .3. Symmetry: T ` a = bT ` b = a .4. Transitivity: T ` a = b T ` b = T ` a = .5. Congruene:T ` a1 = b1 : : : T ` an = bnT ` f(a1; : : : ; an) = f(b1; : : : ; bn) .The semantis for terms is given by a model Mover a domain D and an assignment � for the vari-ables so that M [[x℄℄� = �(x) and M [[f(a1; : : : ; an)℄℄� =M(f)(M [[a1℄℄�; : : : ;M [[an℄℄�), and M [[a℄℄� 2 D for alla. We say that M;� j= a = b i� M [[a℄℄� = M [[b℄℄�,and M j= a = b i� M;� j= a = b for all assign-ments � over vars(a = b). We write M;� j= Swhen 8a; b : a = b 2 S � M;� j= a = b, andM;� j= T ` a = b when (M;� j= T) � (M;� j= a = b).3 Canonizable and Solvable TheoriesShostak's algorithm goes beyond ongruene losureby deiding equality in the presene of funtion sym-bols that are interpreted in a theory � [Sho84, CLS96℄.The algorithm is targeted at anonizable and solvabletheories, i.e., theories that are equipped with solversand anonizers as outlined below. We write j=� a = bto indiate that a = b is valid in theory � . The anon-izer and solver are �rst desribed for pure � -terms, i.e.,without any uninterpreted funtion symbols, and thenextended to uninterpreted terms by regarding these asvariables.De�nition 3.1 A theory � is anonizable if there is aanonizer � suh that
 33

1. j=� a = b i� �(a) � �(b).2. �(x) � x.3. vars(�(a)) � vars(a).4. �(�(a)) � �(a).5. If �(a) � f(b1; : : : ; bn), then �(bi) � bi for 1 �i � n.For example, a anonizer � for the theory of lineararithmeti an be de�ned to transform expressions intoan ordered-sum-of-monomials normal form. A term ais said to be anonial if �(a) � a.De�nition 3.2 A model M is a �-model if M j= a =�(a) for any term a, and M 6j= a = b for distintanonial, variable-free terms a and b.De�nition 3.3 A set of equalities S and a = b are�-equivalent i� for all �-models M and assignments �over the variables in a and b, M;� j= a = b i� thereis an assignment �0 extending �, over the variables inS; a; and b, suh that M;�0 j= S.De�nition 3.4 A anonizable theory is solvable ifthere is an operation solve suh that solve(a = b) = ?if a = b is unsatis�able in any �-model, or S =solve(a = b) for a set of equalities S suh that1. S is a set of n equalities of the form xi = ei for0 � n where for eah i, 0 < i � n,(a) xi 2 vars(a = b).(b) xi 62 vars(ej), for j, 0 < j � n.() xi 6� xj , for i 6= j and 0 < j � n.(d) �(ei) � ei.2. S and a = b are �-equivalent.A solver for linear arithmeti, for example, takes anequation of the form+ a1x1 + : : :+ anxn = d+ b1x1 + : : :+ bnxn;where a1 6= b1, and returnsx1 = �((d�)=(a1 � b1)+ ((b2 � a2)=(a1 � b1)) � x2+ : : :+ ((bn � an)=(a1 � b1)) � xn):In general, solve(a = b) may ontain variables that donot our in a = b, and vie-versa.There are a number of interesting anonizable andsolvable theories inluding linear arithmeti, the the-ory of tuples and projetions, algebrai datatypes like

lists, set algebra, and the theory of �xed-sized bitve-tors. In many ases, the anonizability and solvabil-ity of the union of theories (with disjoint signatures)follows from the anonizability and solvability of itsonstituent theories.1 We do not address modularityissues here but instead assume that we already have aanonizer and solver for a single ombined theory.The solvers and anonizers haraterized above areintended to work in the absene of uninterpreted fun-tion symbols. They are adapted to terms ontaininguninterpreted subterms by treating these subterms asvariables. Canonizers are applied to terms ontaininguninterpreted subterms by renaming distint uninter-preted subterms with distint new variables. For agiven term a, let be a bijetive mapping between aset of variables X that do not appear in a and theuninterpreted subterms of a. The appliation of a sub-stitution to a term a, written [a℄, is de�ned so that[a℄ = f([a1℄; : : : ; [an℄) if a � f(a1; : : : ; an), wheref is interpreted. If a is in the domain of , then[a℄ = (a), and otherwise, [a℄ = a. Then �(a) is[�(�1[a℄)℄.For solving equalities ontaining uninterpretedterms, we introdue, as with �, a bijetive map be-tween a set of variables X not ourring in a or b, andthe uninterpreted subterms of a and b, suh thatsolve(a = b) = [solve(�1 [a℄ = �1 [b℄)℄ .When uninterpreted terms are handled as above, theonditions in De�nitions 3.1 and 3.4 must be suitablyadapted by using solvables(a) instead of vars(a).The proof theory for equality is augmented for an-onizable, solvable theories by the proof rules:1. Canonization: T ` a = �(a) , for any term a.2. Solve: T ` a = b T [S ` = dT ` = d if S =solve(a = b) 6= ? and vars(= d) � vars(T).3. Solve-?: T ` a = bT ` false , if solve(a = b) = ?.A sequent T ` = d is derivable if there is a proofof T ` = d using one of the inferene rules: axiom,reexivity, symmetry, transitivity, ongruene, anon-ization, solve, or solve-?. We say that T ` S is deriv-able if T ` = d is derivable for every = d in S.The sequent T; S ` = d is just T [S ` = d. Theweakening and ut lemmas below are easily veri�ed.1The general result on ombining solvers laimed byShostak [Sho84℄ is inorret, but there are some restrited re-sults on ombining equational uni�ers [BS96℄ that an be appliedhere.
 34

Lemma 3.5 (weakening) If T � T 0 and T ` a = bis derivable, then T 0 ` a = b is derivable.Lemma 3.6 (ut) If T 0 ` T and T ` a = b is deriv-able, then T 0 ` a = b is derivable.Theorem 3.7 (proof soundness) If T ` a = b isderivable, then for any �-model M and assignment �over vars(T), M;� j= T ` a = b.Proof. By indution on the derivation of T ` a =b. The soundness of the solve rules follows from theonditions in De�nition 3.4.A set of equalities S is said to be funtional (ina left-to-right reading of the equality) if whenever a =b 2 S and a = b0 2 S, b � b0. For example, the solutionset returned by solve is funtional. A funtional setof equalities an be treated as a substitution and theassoiated operations are de�ned below. S(a) returnsthe solution for a if it exists in S, and a itself, otherwise.If a = b is in S for some b, then a is in the domain ofS, i.e., dom(S).S(a) = � b if a = b 2 Sa otherwisedom(S) = fa j 9b: a = b 2 Sg:The operation a S� b heks if a is ongruent to bin S, i.e., a � f(a1; : : : ; an), b � f(b1; : : : ; bn), andS(ai) � S(bi) for 1 � i � n. A set of equalities S issaid to be ongruene-losed when for any terms a andb in dom(S) suh that a S� b, we have S(a) � S(b).S[a℄ replaes a subterm b in a by S(b), where b 2solvables(a).S[f(a1; : : : ; an)℄ = f(S[a1℄; : : : ; S[an℄);if f is interpretedS[a℄ = S(a); otherwise.norm(S)(a) is a normal form for a with respet to Sand is de�ned as �(S[a℄). The operation norm does notappear in Shostak's algorithm and is the key elementof our algorithm and its proof. With S �xed, we use âas a syntati abbreviation for norm(S)(a).norm(S)(a) = �(S[a℄):Lemma 3.8 If solve(a = b) = S 6= ?, thennorm(S)(a) � norm(S)(b).Proof. By de�nitions 3.3 and 3.4(2), for any �-model M and assignment �0, we have M;�0 j= S ()M;�0 j= a = b. Let a0 � S[a℄ and b0 � S[b℄. By indu-tion on a,M;�0 j= a = a0, and similarlyM;�0 j= b = b0.

Hene,M;�0 j= a0 = b0. Then, sineM is a �-model, byDe�nition 3.2, it must be the ase that �(a0) � �(b0),and therefore norm(S)(a) � norm(S)(b).The de�nition of the lookup operation uses Hilbert'sepsilon operator, indiated by the keyword when , toreturn S(f(b1; : : : ; bn)) when b1; : : : ; bn satisfying thelisted onditions an be found. If no suh b1; : : : ; bnan be found, then lookup(S)(a) returns a itself. Weshow later that the lookup operation is used only whenthe results of this hoie are deterministi.lookup(S)(f (a1 ; : : : ; an)) = S(f(b1; : : : ; bn));when b1 ; : : : ; bn :f(b1; : : : ; bn) 2 dom(S);and ai � S(bi);for 1 � i � nlookup(S)(a) = a; otherwise.an(S)(a) is a anonial form in whih any uninter-preted subterm e that is ongruent to a known left-hand side e0 in S is replaed by S(e0). It is analogousto the anon operation in Shostak's algorithm. We usea as a syntati abbreviation for an(S)(a).an(S)(f (a1 ; : : : ; an)) = lookup(S)(f (a1 ; : : : ; an));if f is uninterpretedan(S)(f (a1 ; : : : ; an)) = �(f(a1; : : : ; an));if f is interpretedan(S)(a) = S(a); otherwise:Lemma 3.9 (�-norm) If S is funtional, thennorm(S)(�(a)) � â and an(S)(�(a)) � a.Proof. We know that ` �(a) = a. Then for b0 =S[�(a)℄ and b = S[a℄, the equality b0 = b is valid inevery �-model. Then by De�nition 3.2, �(S[�(a)℄) ��(S[a℄), and hene the �rst part of the theorem.The reasoning in the seond part is similar. If we letR = fb = b j b 2 ddaeeg, then an(S)(a) � norm(R)(a).We an therefore use the �rst part of the theorem toestablish the seond part.We next introdue a omposition operation formerging the results of a solve operation into an existingsolution set. When RÆS is used, S must be funtional,and the result ontains a = b̂ for eah equality a = bin R in addition to the equalities in S.R Æ S = fa = b̂ j a = b 2 Rg [S:The following lemmas about omposition are givenwithout proof.Lemma 3.10 (norm deomposition) If R [S isfuntional, thennorm(R Æ S)(a) � norm(S)(norm(R)(a)):
 35

proess(fa = b;Tg) = assert(a = b; proess(T))proess(;) = ;:assert(a = b;?) = ?assert(a = b;S) = (merge(a ; b;S+)); where;S+ = expand(S ; a ; b):expand(S ; a; b) = S [fe = e j e 2 new(S ; a; b)g:new(S ; a; b) = dda = bee � dom(S):merge(a; b;S) = ?; if solve(a = b) = ?merge(a; b;S) = S Æ solve(a = b); otherwise:(?) = ?(S) = (merge(S (a);S (b);S));when a; b :a; b 2 dom(S)a S� b; and S(a) 6� S(b)(S) = S; otherwise.Figure 1: Main Proedure: proessLemma 3.11 (assoiativity of omposition) IfQ [R [S is funtional, then(Q ÆR) Æ S = Q Æ (R Æ S):Lemma 3.12 (monotoniity) If R[S is funtional,then if R(a) � R(b), then (R Æ S)(a) � (R Æ S)(b), forany a and b.4 An Algorithm for Deiding Equalityin the Presene of TheoriesWe next present an algorithm for deiding T ` =d for terms ontaining uninterpreted funtion sym-bols and funtion symbols interpreted in a anoniz-able and solvable theory. The algorithm for verify-ing T ` = d heks that an(S)() � an(S)(d),where S = proess(T). The proess proedure shownin Figure 1, is written as a funtional program. It isa mathematial desription of the algorithm and notan optimized implementation. The state of the algo-rithm onsists of a set of equalities S whih holds thesolution set. We demonstrate as an invariant that S isfuntional. Two terms a and b in dom(S) are in thesame equivalene lass aording to S if S(a) � S(b).The operation proess(T) returns a �nal solutionset by starting with an empty solution set and su-

essively proessing eah equality a = b in T by in-voking assert(a = b;S), where S is the state as re-turned by the reursive all of proess . The invoationof assert(a = b;S) is exeuted by �rst reduing a andb to their respetive anonial forms a and b. Next,S is expanded to inlude e = e for eah subterm eof a = b where 62 dom(S). This preproessing stepensures that S ontains entries orresponding to anyterms that might be needed in the ongruene losurephase in the operation .2 The merge operation thensolves the equality a = b to get a solution3 S0, andreturns S Æ S0 as the new value for the state S. Aswe will show, this new value aÆrms a = b, but it isnot ongruene-losed and hene does not ontain allthe onsequenes of the assertion a = b. The step(S) omputes the ongruene losure of S by repeat-edly piking a pair of ongruent terms a and b fromdom(S) suh that S(a) 6� S(b) and merging them us-ing merge(S (a);S (b);S). Eventually either a ontra-dition is found or all ongruent left-hand sides in Sare merged and the operation terminates returninga ongruene-losed solution set.The above algorithm �xes the nontermination andinompleteness problems in Shostak's algorithm by in-troduing the norm operation and the omposition op-erator R Æ S to fold in a solution. The norm opera-tion ensures that no new uninterpreted terms are in-trodued during ongruene losure in the funtion ,as is needed to guarantee termination. The omposi-tion operator R Æ S ensures that any newly generatedsolution S is immediately substituted into R and thealgorithm never attempts to �nd a solution for an al-ready solved non-interpreted term.We �rst illustrate the algorithm on some examples.The �rst example ontains no interpreted symbols.Example 4.1 Consider the goal f5(x) = x; f3(x) =x ` f(x) = x. The value of S after the base ase is;. After the preproessing of f3(x) = x in assert , Sis fx = x; f(x) = f(x); f2(x) = f2(x); f3(x) = f3(x)g:After merging f3(x) and x, S is fx = x; f(x) =f(x); f2(x) = f2(x); f3(x) = xg: When f5(x) = xis preproessed in assert , an(S)(f 5 (x)) yields f2(x)sine S(f3(x)) � x, and S is left unhanged. Whenf2(x) and x have been merged, S is fx = x; f(x) =f(x); f2(x) = x; f3(x) = xg: Now f(x) S� f3(x)and hene f(x) and x are merged so that S is nowfx = x; f(x) = x; f2(x) = x; f3(x) = xg:2Atually, the interpreted subterms of a = b need not all beinluded in dom(S). Only those that are immediate subterms ofuninterpreted subterms in a = b are needed.3Any variables ourring in solve(a = b) and not in vars(a =b) must be fresh, i.e., they must not our in the original on-jeture or be generated by any other invoation of solve.
 36

The onlusion f(x) = x easily follows sinean(S)(f (x)) � x � an(S)(x).Example 4.2 Consider y + 1 = x; f(y) + 1 = y �1; f(x� 1)� 1 = x+1 ` false whih is a permutationof our earlier example. Starting with S � ; in thebase ase, the preproessing of f(x � 1) � 1 = x + 1auses the equation to be plaed into anonial formas �1 + f(�1 + x) = 1 + x and S is set tof 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = f(�1 + x); 1 + x = 1 + xg:Solving �1+f(�1+x) = 1+x yields f(�1+x) = 2+x,and S is set tof 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = 2 + x; 1 + x = 1 + xg:No unmerged ongruenes are deteted. Next, f(y) +1 = y � 1 is asserted. Its anonial form is 1 + f(y) =�1+ y, and one this equality is asserted, the value ofS is f 1 = 1;�1 = �1; x = x;�1 + x = �1 + x;f(�1 + x) = 2 + x; 1 + x = 1 + x; y = y;f(y) = �2 + y;�1 + y = �1 + y;1 + f(y) = �1 + yg:Next y + 1 = x is proessed. Its anonial form is1+ y = x and the equality 1+ y = 1+ y is added to S.Solving y + 1 = x yields x = 1 + y, and S is reset tof 1 = 1;�1 = �1; x = 1 + y;�1 + x = y;f(�1 + x) = 3 + y; 1 + x = 2 + y; y = y;f(y) = �2 + y;�1 + y = �1 + y;1 + f(y) = �1 + y; 1 + y = 1 + yg:The ongruene lose operation detets the ongru-ene f(1� y) S� f(x) and invokes merge on 3 + y and�2 + y. Solving this equality 3 + y = �2 + y yields ?returning the desired ontradition.5 AnalysisWe desribe the proofs of termination, soundness,and ompleteness, and also present a omplexity anal-ysis.Key Invariants. The merge operation is learly theworkhorse of the proedure sine it is invoked fromwithin both assert and . Let U(X) represent the setfa 2 X j a uninterpretedg of uninterpreted terms inthe set X . Let A be solvables(a), B be solvables(b),

and S0 = merge(a; b;S), then assuming U(A [B) �dom(S) and for all 2 A [B, S() � , the followingproperties hold of S0 if they hold of S:1. Funtionality.2. Subterm losure: S is subterm-losed if for anya 2 dom(S), ddaee � dom(S).3. Range losure: S is range-losed if for any a 2dom(S), U(solvables(S (a))) � dom(S), and forany 2 solvables(S (a)), S() � .4. Norm losure: S is norm-losed if S(a) �norm(S)(a) for a in dom(S). This of ourse holdstrivially for uninterpreted terms a.5. Idempotene: S is idempotentif S[S(a)℄ � S(a), norm(S)(S (a)) � S (a), andnorm(S)(norm(S)(a)) � norm(S)(a).These properties an be easily established by in-spetion. Sine whenever merge(a; b;S) is invoked inthe algorithm, the arguments do satisfy the onditionsU(A [B) � dom(S) and for all 2 A [B, S() � ,it then follows that these properties are also preservedby assert and , and therefore hold of proess(T). Weassume below that these invariants hold of S wheneverthe metavariable S is used with or without subsriptsor supersripts.Lemma 5.1 (merge equivalene) LetA = solvables(a) and B � solvables(b). Given thatU(A [B) � dom(S) and for all 2 A [B, S() � ,if S0 = merge(a; b;S) 6= ?, then1. norm(S 0)(a) � norm(S 0)(b).2. U(dom(S 0)) = U (dom(S)).Proof. Let R � solve(a = b). By de�nition,merge(a; b;S) � S ÆR. By Lemma 3.8, norm(R)(a) �norm(R)(b). Sine S() � for 2 A [B,norm(S)(a) � a and norm(S)(b) � b. Hene, by normdeomposition, we have norm(S 0)(a) � norm(S 0)(b).By De�nition 3.4, dom(R) � A [B , heneU(dom(S 0)) = U (dom(S)).Termination. We de�ne #(S) to represent thenumber of distint equivalene lasses partitioningU(dom(S)) as given by P (S).E(S)(a) = fb 2 U(dom(S)) j S (b) � S (a)gP (S) = fE(S)(a) j a 2 U(dom(S))g#(S) = jP (S)j
 37

The de�nition of (S) terminates beause the mea-sure #(S) dereases with eah reursive all. Ifin the de�nition of , merge(S (a);S (b);S) = ?,then learly terminates. Otherwise, let S0 =merge(S (a);S (b);S) 6= ?, for a and b in dom(S) suhthat S(a) 6� S(b) and a S� b. In this ase a and b mustbe uninterpreted terms sine for interpreted terms aand b, if a S� b, then S(a) � S(b) by norm losure. Bymerge equivalene, norm(S 0)(S (a)) � norm(S 0)(S (b))and U(dom(S 0)) = U (dom(S)). By monotoniity,for any and d suh that S() � S(d), we haveS0() � S(d), and therefore #(S0) � #(S). However,by norm losure, S0(a) � S0(b) so that #(S0) < #(S).Soundness. The following lemmas establish thesoundness of the operations norm and an with re-spet to S. Substitution soundness and an soundnessare proved by a straightforward indution on a, andnorm soundness is a simple onsequene of substitu-tion soundness .Lemma 5.2 (substitution soundness)If vars(a) � vars(T [S), then T; S ` a = a0 is deriv-able, for a0 � S[a℄.Lemma 5.3 (norm soundness)If vars(a) � vars(T [S), then T; S ` a = â is deriv-able.Lemma 5.4 (an soundness)If vars(a) � vars(T [S), then T; S ` a = �a is deriv-able.Lemma 5.5 (merge soundness)If S0 = merge(a; b;S) 6= ?, then if T; S ` a = b, andT; S0 ` = d with vars(= d) � vars(T [S), thenT; S ` = d. Otherwise, merge(a; b;S) = ?, andT; S ` ?.Proof. If S0 = merge(a; b;S) 6= ?, then let R =solve(a = b). By norm soundness, S;R ` S0, andhene by ut, T; S;R ` = d is derivable. By the solverule, T; S ` = d is derivable.If merge(a; b;S) = ?, then by similar reasoning us-ing the solve-? rule, T; S ` false is derivable.Lemma 5.6 (soundness) If S0 = (S) 6= ?,T; S0 ` a = b for vars(a = b) � vars(T ;S), thenT; S ` a = b is derivable. Otherwise, (S) = ?, andS ` false is derivable.Proof. By omputation indution on the de�nitionof using merge soundness .

Lemma 5.7 (proess soundness)If S = proess(T1) 6= ?, T1 � T2, and T2; S ` =d for vars(= d) � vars(T2), then T2 ` = d isderivable. Otherwise, proess(T1) = ?, and T1 ` falseis derivable.Proof. By indution on the length of T1. In thebase ase, S is empty and the theorem follows triv-ially. In the indution step, with T1 = fa = b; T 01g andS0 = proess(T 01), we have the indution hypothesisthat T2 ` = d is derivable if T2; S0 ` = d is deriv-able, for any , d suh that vars(= d) � vars(T2).We know by an soundness that T2; S0 ` a = a andT2; S0 ` b = b are derivable. When S' is augmentedwith identities over subterms of a and b to get S0+, wehave the derivability of T2; S0 ` S0+. By soundness,we then have the derivability of T2; S0+ ` = d fromthat of T2; S ` = d. The derivability of T2; S0 ` = dthen follows by ut from that of T2; S0+ ` = d, andwe get the onlusion T2 ` = d by the indutionhypothesis.A similar indution argument shows that whenproess(T1) = ?, then T2 ` false .Theorem 5.8 (soundness) If S = proess(T) 6= ?,vars(a = b) � vars(T), and a � b, then T ` a = b isderivable. Otherwise, proess(T) = ?, and T ` falseis derivable.Proof. If S = proess(T) 6= ?, then by an sound-ness, T; S ` a = a and T; S ` b = b are derivable.Hene, by transitivity and symmetry, T; S ` a = b isderivable. Therefore, by proess soundness, T ` a = bis derivable.If proess(T) = ?, then already by proess sound-ness, T ` false .Completeness. We show that when S = proess(T)then an(S) is a �-model satisfying T . When this isthe ase, ompleteness follows from proof soundness .In proving ompleteness, we exploit the property thatthe output of proess is ongruene-losed.Lemma 5.9 (onuene)If S is ongruene-losed and U(ddaee) � dom(S), thenan(S)(a) � norm(S)(a).Proof. The proof is by indution on a. In thebase ase, when a is a variable, an(S)(a) � S (a) �norm(S)(a).If a is uninterpreted and of the form f(a1; : : : ; an),then an(S)(a) � lookup(S)(f (a1 ; : : : ; an)). Sine S issubterm-losed, by the indution hypothesis and normlosure, we have ai � âi � S(ai) for 0 < i � n. Then
 38

there must be some b of the form f(b1; : : : ; bn) suhthat S(bi) � S(ai), for 0 < i � n, sine a itself is suha b. Then by ongruene losure and norm losure,a � S(b) � S(a) � â, sine a S� b.If a is interpreted, by the indution hypothe-sis and subterm losure, a � �(f(a1; : : : ; an)) ��(f(â1; : : : ; ân)) � â.Lemma 5.10 (an omposition) If S0 = S ÆR andS0 is ongruene-losed, then an(S 0)(an(S)(a)) �an(S 0)(a).Proof. By indution on a. When ais a variable. an(S)(a) � S (a). If a 62dom(S), then S(a) = a, and hene the onlu-sion. Otherwise, by range-losure, U(ddS(a)ee) �dom(S) � dom(S 0). Then, by onuene, normdeomposition, and idempotene, an(S 0)(S (a)) �norm(S 0)(S (a)) � norm(R)(norm(S)(S (a))) �norm(R)(norm(S)(a)) � norm(S 0)(a) � an(S 0)(a).In the indution step, let a � f(a1; : : : ; an). If a isuninterpreted, then iff(a1; : : : ; an) S� f(b1; : : : ; bn)for some f(b1; : : : ; bn) 2 dom(S), then a �S(f(b1; : : : ; bn)). The reasoning used in the basease an then be repeated to derive the onlusion.Otherwise, a � f(a1; : : : ; an) and by the indutionhypothesis and the de�nition of an, an(S 0)(a) �lookup(S 0)(f (an(S 0)(a1); : : : ; an(S 0)(an))) �an(S 0)(a).When a is interpreted, by the indution hypothesisand the �-norm lemma,an(S 0)(a)� an(S 0)(�(f (a1 ; : : : ; an)))� �(f(an(S 0)(a1); : : : ; an(S 0)(an)))� an(S 0)(a):Lemma an omposition with ; for R yields theidempotene of an(S) for ongruene-losed S so thatwe an de�ne a �-model MS in terms of an(S). Thedomain D of MS onsists of fajan(S)(a) = ag. Themapping of funtions is suh thatMS(f)(a1; : : : ; an) =lookup(S)(f (a1; : : : ; an)), if f is uninterpreted. If f isinterpreted MS(f)(a1; : : : ; an) = �(f(a1; : : : ; an)). If�[x℄ = �(x) and �[f(a1; : : : ; an)℄ = f(�[a1℄; : : : ; �[an℄),then by the idempotene of an(S), MS[[a℄℄� is justan(S)(�[a℄). Lemma �-norm an then be used to showMS j= �(a) = a. MS is therefore a �-model. Corre-spondingly, for a given set of variables X , �XS is de�nedso that �XS (x) = an(S)(x) for x 2 X .

Lemma 5.11 (an �-model) If S = proess(T) 6=? and X = vars(T), then MS; �XS j= a = b for anya = b 2 T .Proof. Showing that MS ; �XS j= a = b is thesame as showing that an(S)(a) � an(S)(b). Theproof is by indution on T . In the base ase, Tis empty. In the indution step, T = fa = b; T 0gwith X 0 = vars(T 0). Let S0 = proess(T 0). Bythe indution hypothesis, MS0 ; �X0S0 j= T 0. WithS0+ = expand(S ; a 0; b0) for a0 � an(S 0)(a) and b0 �an(S 0)(b), let S0 = merge(a; b;S 0+), hene by mergeequivalene, norm(S0)(a 0) � norm(S0)(b0). By asso-iativity of omposition, it an be shown that thereis an R suh that S = S0 Æ R and an R0 suh thatS = S0+ Æ R0. Hene by monotoniity, norm(S)(a 0) �norm(S)(b0). Sine S is ongruene-losed, by on-uene, an(S)(a 0) � norm(S)(a 0) and an(S)(b0) �norm(S)(b0). Hene, an(S)(a 0) � an(S)(b0).It an also be shown that an(S 0+)(a) � an(S 0)(a),and similarly for b. Therefore, by an omposition, wehave an(S)(a) � an(S)(b), and heneMS ; �XS j= a =b. A similar argument shows that for = d 2 T 0, sinean(S 0)() � an(S 0)(d), we also have an(S)() �an(S)(d).When T ` false is derivable, we know by proofsoundness that there is no �-model satisfying T andhene by the an �-model lemma, proess(T) must be?.Theorem 5.12 (ompleteness)If S = proess(T) 6= ? and T ` a = b, thenan(S)(a) � an(S)(b).Proof. Sine MS; �XS j= T by an �-model for X =vars(T), we have by proof soundness that an(S)(a) �an(S)(b).Complexity. We have already seen in the termina-tion argument that the number of iterations of inproess is bounded by the number of distint equiv-alene lasses of terms in dom(S) whih is no morethan the number of distint uninterpreted terms. Wewill assume that the solve operation is performed byan orale and that there is some �xed bound on thesize of the solution set returned by it. In the ase oflinear arithmeti, the solution set has at most one el-ement. Let n represent the number of distint termsappearing in T whih is also a bound on jSj and onthe size of the largest term appearing in S. The om-position operation an be implemented in linear time.Thus the entire algorithm has O(n2) steps assumingthat the � and solve operations are length-preservingand ignoring the time spent inside solve .
 39

6 ConlusionsShostak's deision proedure for equality in thepresene of interpreted and uninterpreted funtionsis seriously awed. It is both inomplete and non-terminating, and hene not a deision proedure. Allsubsequent variants of Shostak's algorithm have beensimilarly awed. This is unfortunate beause deisionproedures based on Shostak's algorithm are at theore of a number of widely used veri�ation systems.We have presented a orret algorithm that apturesShostak's key insights, and desribed proofs of termi-nation, soundness, and ompleteness.Aknowledgments: We are espeially grateful toClark Barrett for instigating this work and orret-ing several signi�ant errors in earlier drafts, and toJean-Christophe Filliâtre for his oCaml implementa-tion whih yielded useful feedbak on the algorithmstudied here. The presentation has been substantiallyimproved thanks to the suggestions of the anonymousreferees and those of Nikolaj Bj�rner, David Cyrluk,Bruno Dutertre, Ravi Hosabettu, Pat Linoln, UrsulaMartin, David MAllester, Sam Owre, John Rushby,and Ashish Tiwari.Referenes[BDL96℄ Clark Barrett, David Dill, and Jeremy Levitt.Validity heking for ombinations of theo-ries with equality. In Mandayam Srivas andAlbert Camilleri, editors, Formal Methods inComputer-Aided Design (FMCAD '96), volume1166 of Leture Notes in Computer Siene,pages 187{201, Palo Alto, CA, November 1996.Springer-Verlag.[Bj�99℄ Nikolaj Bj�rner. Integrating Deision Proe-dures for Temporal Veri�ation. PhD thesis,Stanford University, 1999.[BRRT99℄ L. Bahmair, C. R. Ramakrishnan, I.V. Ra-makrishnan, and A. Tiwari. Normalization viarewrite losures. In International Confereneon Rewriting Tehniques and Appliations, RTA`99, Berlin, 1999. Springer-Verlag.[BS96℄ F. Baader and K. Shulz. Uni�ation in theunion of disjoint equational theories: Combin-ing deision proedures. J. Symboli Computa-tion, 21:211{243, 1996.[CLS96℄ David Cyrluk, Patrik Linoln, and N. Shankar.On Shostak's deision proedure for ombina-tions of theories. In M. A. MRobbie and J. K.Slaney, editors, Automated Dedution|CADE-13, volume 1104 of Leture Notes in Arti�ial

Intelligene, pages 463{477, New Brunswik,NJ, July/August 1996. Springer-Verlag.[DST80℄ P.J. Downey, R. Sethi, and R.E. Tarjan. Vari-ations on the ommon subexpressions problem.Journal of the ACM, 27(4):758{771, 1980.[EHD93℄ Computer Siene Laboratory, SRI Interna-tional, Menlo Park, CA. User Guide for theEhdm Spei�ation Language and Veri�ationSystem, Version 6.1, February 1993. Three vol-umes.[FORS01℄ J-C. Filliâtre, S. Owre, H. Rue�, andN. Shankar. ICS: Integrated anonizer andsolver. In CAV 01: Computer-Aided Veri�a-tion. Springer-Verlag, 2001. To appear.[Kap97℄ Deepak Kapur. Shostak's ongruene losure asompletion. In H. Comon, editor, InternationalConferene on Rewriting Tehniques and Appli-ations, RTA `97, number 1232 in Leture Notesin Computer Siene, pages 23{37, Berlin, 1997.Springer-Verlag.[MT96℄ Zohar Manna and The STeP Group. STeP:Dedutive-algorithmi veri�ation of reativeand real-time systems. In Rajeev Alur andThomas A. Henzinger, editors, Computer-AidedVeri�ation, CAV '96, volume 1102 of Le-ture Notes in Computer Siene, pages 415{418, New Brunswik, NJ, July/August 1996.Springer-Verlag.[NO79℄ G. Nelson and D. C. Oppen. Simpli�ation byooperating deision proedures. ACM Trans-ations on Programming Languages and Sys-tems, 1(2):245{257, 1979.[NO80℄ G. Nelson and D. C. Oppen. Fast deision pro-edures based on ongruene losure. Journalof the ACM, 27(2):356{364, 1980.[ORS92℄ S. Owre, J. M. Rushby, and N. Shankar. PVS:A prototype veri�ation system. In Deepak Ka-pur, editor, 11th International Conferene onAutomated Dedution (CADE), volume 607 ofLeture Notes in Arti�ial Intelligene, pages748{752, Saratoga, NY, June 1992. Springer-Verlag.[Sho78℄ Robert E. Shostak. An algorithm for reasoningabout equality. Communiations of the ACM,21(7):583{585, July 1978.[Sho84℄ Robert E. Shostak. Deiding ombinations oftheories. Journal of the ACM, 31(1):1{12, Jan-uary 1984.[SSMS82℄ R. E. Shostak, R. Shwartz, and P. M. Melliar-Smith. STP: A mehanized logi for spei�a-tion and veri�ation. In D. Loveland, editor,6th International Conferene on Automated De-dution (CADE), volume 138 of Leture Notesin Computer Siene, New York, NY, 1982.Springer-Verlag.
 40

Appears in the Proceedings of CADE’02, LNCS. c©Springer-Verlag

Formal Verification of a
Combination Decision Procedure?

Jonathan Ford and Natarajan Shankar

Computer Science Laboratory
SRI International, Menlo Park CA 94025 USA

{ford, shankar}@csl.sri.com
Phone: (650)859-5272

Abstract. Decision procedures for combinations of theories are at the
core of many modern theorem provers such as ACL2, Ehdm, PVS, SIM-
PLIFY, the Stanford Pascal Verifier, STeP, SVC, and Z/Eves. Shostak, in
1984, published a decision procedure for the combination of canonizable
and solvable theories. Recently, Ruess and Shankar showed Shostak’s
method to be incomplete and nonterminating, and presented a correct
version of Shostak’s algorithm along with informal proofs of termination,
soundness, and completeness. We describe a formalization and mechan-
ical verification of these proofs using the PVS verification system. The
formalization itself posed significant challenges and the verification re-
vealed some gaps in the informal argument.

1 Introduction

Decision procedures play an important rôle in a number of areas such as auto-
mated deduction, computer-aided verification, and constraint solving. Since bugs
in decision procedures can lead to unsound inferences, it is natural to ask if such
verification tools can themselves be verified. We present here the first instance
of a verified decision procedure for a combination of theories based on Shostak’s
ideas. Shostak’s algorithm [Sho84] for building decision procedures for the union
of canonizable and solvable equational theories has been widely used despite
the lack of a convincing correctness proof. Recently, Ruess and Shankar [RS01]
showed that this algorithm (even with minor flaws corrected [CLS96]) was both
nonterminating and incomplete. They gave a corrected version of the algorithm
along with informal proofs for termination, soundness, and completeness. We
undertook the challenge of formalizing and verifying these informal arguments
using the PVS verification system [ORS92]. The results of our verification are
presented here along with observations regarding the challenges that we encoun-
tered in the formalization and verification process.
? This work was funded by NSF Grant CCR-0082560, DARPA/AFRL Contract

F33615-00-C-3043, and NASA Contract NAS1-00079. Sam Owre, Harald Rueß, and
John Rushby of SRI provided insightful comments on earlier drafts. We thank the
anonymous referees for their constructive criticism.

1

 41

The correctness of decision procedures has been an important theme in au-
tomated reasoning. Several approaches have been developed for using decision
procedures to gain efficiency in proof construction without compromising sound-
ness. The LCF approach [GMW79] admits only those decision procedures that
can be introduced as tactics, which are metalanguage operations for reducing
proof goals to subgoals in a way that is justifiable in terms of the primitive infer-
ences of the object logic. Tactics can be hard to define (since they have to mimic
proof steps) and inefficient (since they have to generate low-level inference steps).
The generation of proof objects from finished proofs is another way of ensuring
that each proof can be constructed using only the primitive inference steps. The
construction of proof objects even from finished proofs can be inefficient in both
time and space.

In order to avoid the inefficiency of fully expansive proof generation, a num-
ber of researchers have advocated the verification of decision procedures. Boyer
and Moore [BM81] introduce a notion of metafunctions, i.e., function definitions
in the object logic that could be applied to object logic expressions. They use
computational reflection to capture the meanings of these expressions in the
object logic and verify the soundness of some simple derived inference rules in
this manner. Boyer and Moore [BM79] also verified the semantic correctness of
a tautology checker for conditional expressions. Shankar [Sha85] verified both
the semantic and proof-theoretic correctness of a tautology checker for proposi-
tional logic. Some recent examples of verified decision procedures include a Coq
verification of a Gröbner basis algorithm for membership in polynomial ideals
by Théry [Thé98], the verification of ordered binary decision diagram (OBDD)
operations using PVS by von Henke, Pfab, Pfeifer, and Ruess [vHPPR98], and a
similar Coq verification of OBDD operations by Verma and Goubault [VGL00].
Both the algorithm and the theory underlying the combination decision pro-
cedure considered here are significantly more complex than these previously
verified decision procedures.

The primary contribution of our work is in demonstrating the feasibility of for-
mally verifying complex decision procedures. The variant of Shostak’s algorithm
we have verified is quite recent and its foundations are not widely understood.
Our verification closely follows the published informal proof [RS01] so that we
could directly assess its validity. We also used details from an unpublished re-
port that included proofs of some of the lemmas that were given without proof
in the published paper. The verification exposed some gaps in the informal ar-
gument. We found a monotonicity claim in the informal argument to be false
without qualification, but only the qualified form was actually used. A step that
is hinted at as being routine, turned out to not be all that obvious. In the algo-
rithm, any solution returned by the solver must contain variables that are either
from the given equality or are “fresh”. Making the notion of freshness precise,
and working with this constraint proved to be one of the major challenges in the
formal verification. The verification makes very heavy use of the PVS type sys-
tem. Our use of PVS types exposed some of the weaknesses in a type propagation
feature of the language called typing judgements.

2

 42

Since PVS itself employs Shostak’s method (with the incompleteness and non-
termination bugs), the validity of this verification might be called into question.
However, the Shostak procedure used in PVS is not known to be unsound. Fu-
ture versions of PVS will employ the ICS decision procedures [FORS01] that are
based on the theory verified here. Despite the circularity between the verifier
and the verified program, this kind of verification is still quite useful. An unsuc-
cessful proof attempt might reveal significant bugs. A successful verification of
the decision procedures could be certified through proof-object generation but
subsequently used without the supporting proof objects.

The decision procedure as verified here is not executable, but it is possible to
derive a verified, executable version that can be turned into efficient Common
Lisp code [Sha99]. The code generated from the verified decision procedure is
unlikely to be as efficient as the highly optimized ICS implementation, but it
could still be used as a reference procedure that can be invoked when certified
results are needed.

We verify both soundness and completeness. The completeness property is
crucial. Higher-level simplification routines might diverge or behave erroneously
if they incorrectly assume completeness. Due to its complexity and popularity,
the verification of Shostak’s algorithm is a good case-study for assessing the
feasibility of certifying decision procedures.

2 Shostak’s Algorithm

We focus here on the verification of a decision procedure for equational theo-
ries where terms are constructed from a combination of interpreted and uninter-
preted function symbols. There are two basic methods for building decision pro-
cedures for combinations of disjoint theories. Nelson and Oppen’s method [NO79]
combines decision procedures for the individual theories by allowing them to
share specific kinds of equality information. Shostak’s method [Sho84] extends
congruence closure to equational theories that are canonizable and solvable. Nel-
son and Oppen’s method is more generally applicable, but Shostak’s method has
certain advantages. It is an online algorithm, i.e., processes inputs incrementally,
so that the term universe for the input is not known in advance. It also yields
a useful function for computing a canonical form respecting the given input
equalities.

All formulas are equalities between terms which are constructed from vari-
ables by means of n-ary function application for n ≥ 0. Sequents of the form
T ` a = b assert the implication between the antecedent equalities in the set T
and the consequent equality a = b. The basic theory of equality with all func-
tion symbols uninterpreted, i.e., without any fixed interpretation, is decidable
by means of congruence closure. Shostak’s algorithm extends the congruence
closure decision procedure to handle interpreted operations from a canonizable
and solvable theory. Informally, a theory is canonizable if there is a canonizer
operation σ such that σ(a) ≡ σ(b) exactly when a = b is valid in the theory. It

3

 43

is solvable if there is an operation solve such that solve(a = b) either returns ⊥
when a = b is unsatisfiable, or a solved form S that is equivalent to a = b.

Shostak’s procedure takes as parameters, a solver solve and canonizer σ for
a theory such as linear arithmetic. The algorithm verifies a sequent T ` a = b
by processing the equalities in T to build a solution set S of equalities in solved
form, or to return ⊥ indicating that a contradiction was found in T . If a solution
set S is returned, then one can use S and σ to define a canonizer can such that
can(S)(f(e)) returns σ(f(can(S)(e))) if f is interpreted. If f is uninterpreted,
can(S)(f(e)) returns c′ for some c equivalent to f(can(S)(e)) where c = c′ is
in S. The conclusion equality a = b can be tested for validity by checking if
can(S)(a) ≡ can(S)(b). The operation can(S) is also used for preprocessing
the input equalities from T . The preprocessed input equalities are solved and
the solution (if any) is composed with the existing value of S. The solution
set S is maintained in congruence-closed form so that the right-hand sides of
congruent left-hand side terms are merged by solving the equality between them
and merging the results into S.

The theory of linear arithmetic is a typical example of a canonizable and
solvable theory. A canonizer can be given by means of a function that returns an
ordered sum-of-products representation for a given linear polynomial by merging
monomials over the same variable into a single monomial. A solver can be given
by using algebraic manipulations to isolate a variable on the left-hand side. The
Shostak procedure of Ruess and Shankar [RS01] can be illustrated on the sequent

f(x− 1)− 1 = f(y) + 1, y − x+ 1 = 0 ` false,

where +, −, and the numerals are from the theory of linear arithmetic, false is
an abbreviation for 0 = 1, and f is an uninterpreted function symbol. Starting
with S ≡ ∅ in the base case, the preprocessing of f(x− 1)− 1 = f(y) + 1 causes
the equality to be placed into canonical form as −1 + f(−1 + x) = 1 + f(y).
The solution set S is initialized to contain reflexivity statements for the non-
interpreted subterms in the canonicalized input equality as {x = x, y = y, f(−1+
x) = f(−1 + x), f(y) = f(y)}. Solving −1 + f(−1 + x) = 1 + f(y) yields
f(−1+x) = 2+f(y), and S is set to {x = x, y = y, f(−1+x) = 2+f(y), f(y) =
f(y)}. No unmerged congruences are detected in S. Next, y − x + 1 = 0 is
canonized as 1− x+ y = 0, and solved as x = 1 + y. This solution is composed
with S to yield {x = y + 1, y = y, f(−1 + x) = 2 + f(y), f(y) = f(y)}. The
congruence between f(−1 + x) and f(y) is detected since the canonical form of
−1 + x is y when the solution for x is inserted and the result is canonized by σ.
The procedure then tries to merge the respective solutions of f(−1+x) and f(y)
by solving 2 + f(y) = f(y). The solver returns ⊥ so that the original sequent is
asserted to be valid.

As a second example, one can check that the sequent f(x−1)−1 = f(y)+1 `
g(f(x−1)−2) = g(f(y)) is valid by computing S to be {x = x, y = y, f(−1+x) =
2+f(y), f(y) = f(y)}, and verifying can(S)(g(f(x−1)−2)) ≡ can(S)(g(f(y))).

4

 44

3 Formalizing Shostak’s Algorithm in PVS

A brief introduction to PVS is given in Appendix A. The formalization ex-
ploits several advanced features of the PVS language including recursive data-
types, predicate subtypes, dependent types, Hilbert’s choice operator, and in-
ductive relations. We describe the formalization in sufficient detail so that it
can be checked for conformity with the informal arguments [RS01] (abbreviated
below as RS) and reproduced using some other automated proof checker.1

Syntax. Terms are built from a given signature consisting of a set of variables X
and function symbols F . A term is either a variable x for x ∈ X or of the form
f(a1, . . . , an), where f ∈ F . A term of the form f(a1, . . . , an) is interpreted (re-
spectively, uninterpreted) if f is interpreted (respectively, uninterpreted). Terms
are formalized by means of a recursive datatype syntax consisting of a con-
structor v for variables with a natural number index field index, and an ap-
plication constructor app with a function symbol field func and an arguments
field args which is formalized as a dependent type [below(arity(func)) ->
syntax] which represents an array of syntax in the arity of the function sym-
bol of the term. The type below(num) for a natural number num is the (possibly
empty) subrange 0, . . . , num − 1.2 The function symbol type funsymbs is also
a datatype consisting of constructors ifn and ufn for interpreted and uninter-
preted function symbols, respectively, each with an index field and an arity
field, and a thry (theory) field for interpreted function symbols.

1funsymbs: DATATYPE

BEGIN

IMPORTING theories

ifn(index: nat, arity: nat, thry: TH): ifn?

ufn(index: nat, arity: nat): ufn?

END funsymbs

syntax: DATATYPE

BEGIN

IMPORTING funsymbs, max_lemmas

v(index: nat): v?

app(func: funsymbs,

args: [below(arity(func)) -> syntax]): app?

END syntax

Since we are admitting just one interpreted theory, we fix a theory th. The
predicate thry func checks that its argument is an interpreted function symbol
1 The complete PVS 2.4.1 dump file is available at ftp://ftp.csl.sri.com/pub/

users/shankar/shostak-verification-dump.
2 An application could also be formalized in terms of a list of arguments whose length

is the arity of the function symbol. The array-based formalization has some im-
portant advantages. Terms are well-formed by construction thus avoiding the need
for cumbersome proof obligations. Operations on terms can be defined by a simple
structural recursion without the use of mutual recursion on terms and lists of terms.

5

 45

from theory th. The type thry func is the predicate subtype corresponding to
the predicate thry func.

2thry_func(ff:funsymbs): bool =

ifn?(ff) AND thry(ff) = th

The type of equalities is defined as a record type with fields lhs and rhs.

3equality: TYPE = [# lhs, rhs: syntax #]

The variables a, b, and c are declared to range over terms, aa, bb, and cc range
over equalities, and R, S, and T range over lists of equalities.

The set of variables in a term a is defined using datatype recursion as vars(a).
Sets are just predicates in the higher-order logic so that a variable x is in the
set vars(a) iff vars(a)(x) holds. The set vars(a) can be shown to be finite
by structural induction. A term a is well-typed in n for a natural number n, if
the index of any variable in a is below n. This is represented by the predicate
well typed?(n)(a) and the corresponding type typed(n). The operation of
collecting the set of subterms of a given term is represented by subterm(a).
The definitions of these operations are omitted.

Pure Terms. The canonizer and solver are defined for pure terms, i.e., terms
without uninterpreted function symbols, but then applied to arbitrary terms by
treating the uninterpreted subterms as variables. We formalize pure terms by
means of a datatype pure that has two classes of variables: v(i) for the ordi-
nary variables indexed by i, and u(a) corresponding to the uninterpreted term
a. Function applications for pure terms are typed to contain only interpreted
function symbols. It is easy to define an operation abs that converts a term to
the corresponding pure term, and its inverse gamma.

4pure[(IMPORTING theories) th: TH]: DATATYPE WITH SUBTYPES var?, func?

BEGIN

IMPORTING syntax_ops[th]

v(index: nat): v? : var?

u(a: uninterpreted): u? :var?

app(func: thry_func,

args: [below(arity(func)) -> pure]): app? : func?

END pure

Semantics. The semantics for a term a is given by M [[a]]ρ for an interpretation
M over a domain D such that M(f) yields a mapping from Dn to D for function
symbol f of arity n, and an assignment ρ mapping variables to values in D. For
variables, M [[x]]ρ = ρ(x), and M [[f(a1, . . . , an)]]ρ = M(f)(M [[a1]]ρ, . . . ,M [[an]]ρ).
We say that M,ρ |= a = b iff M [[a]]ρ = M [[b]]ρ, and M |= a = b iff M,ρ |= a = b
for all assignments ρ over vars(a = b). An equality is valid if for all D,M :
M |= a = b.

The concept of a valid equality requires quantification over all domains D and
interpretations M over D. In PVS, such a domain would have to be introduced

6

 46

as the type parameter of a theory. Since PVS does not admit quantification over
types, the domain must be given as a subset or a subtype of a fixed type. We
take this fixed type to be the set of all terms.3 This type can be informally shown
to be adequate for representating any domain set D for the purposes of equality.
The assignment ρ is formalized as a mapping from the set of all variables to the
domain D.

In the semantics for pure terms, the domain type D is the type of pure terms
and a model is a dependent record type consisting of a domain field mdom that
is a subset of D, and a function interpretation field f that is a dependent type
mapping a function ff and an array of argument valuations to a valuation for
the application. The type arity(ff) is an abbreviation for below(arity(ff)).

5D: TYPE+ = pure

model: TYPE = [# mdom : setof[D],

f: [ff: thry_func ->

[[arity(ff) -> (mdom)] -> (mdom)]] #]

Solutions. The “state” of the algorithm is maintained in a solution set S that is
just a list of equalities of a special form. The operation apply(S)(a) (informally,
S(a)) is defined recursively to look up the solution for a (if any) in S.4

6apply(S)(a): RECURSIVE syntax =

CASES S OF

null: a,

cons(aa, R): IF lhs(aa) = a

THEN rhs(aa)

ELSE apply(R)(a)

ENDIF

ENDCASES

MEASURE length(S)

The operation replace vars(S)(d) (informally, S[d]) returns the result of re-
placing all occurrences of any left-hand side variable from S in a pure term
d, by the corresponding right-hand side. The replace vars operation is ex-
tended from pure terms to arbitrary terms as replace solvables. The oper-
ation subst(rho)(d) (used in 7) is similar to replace vars(S)(d) but rho
here is a substitution mapping variables to terms.

Canonizers. A canonizer σ for pure terms from a theory τ is a parameter to
the combination decision procedure. A valid canonizer is required to verify va-
lidities, i.e., |=τ a = b implies σ(a) ≡ σ(b), and additionally preserve variables,
σ(x) = x and vars(σ(a)) ⊆ vars(a), be idempotent, σ(σ(a)) = σ(a), and leave
3 The type of closed terms, when nonempty, is also a valid candidate for the domain.
4 The termination of the recursive definition is justified by the measure length(S)

which causes the typechecker to generate proof obligations verifying that the measure
decreases with each recursive call.

7

 47

subterms canonical, σ(b) = b for any subterm b of σ(a). These conditions on a
valid canonizer are captured by the predicate canonizer?(sigma). The validity
condition is awkward since it uses an oracle |=τ for τ -validity. We found a way
to replace this condition by the sufficient pair of conditions on σ:

1. σ-substitutivity: σ(ρ[a]) ≡ σ(ρ[σ(a)]), for any substitution ρ, and
2. σ-distributivity: σ(f(σ(a1), . . . , σ(an))) ≡ σ(f(a1, . . . , an)).

canonical?(sigma)(a) is defined to hold when sigma(a) = a.

7canonizer?(sigma): bool =

((FORALL d, rho: sigma(subst(rho)(d)) = sigma(subst(rho)(sigma(d))))

AND (FORALL d: app?(d) IMPLIES

sigma(app(func(d), LAMBDA (i:arity(func(d))): sigma(args(d)(i))))

= sigma(d))

AND (FORALL u : sigma(u) = u)

AND (FORALL d, u: vars(sigma(d))(u) IMPLIES vars(d)(u))

AND (FORALL d : sigma(sigma(d)) = sigma(d))

AND (FORALL d, f: sigma(d) = f IMPLIES

(FORALL (i:arity(func(f))): canonical?(sigma)(args(f)(i)))))

The adaptation of the canonizer from pure terms to terms is done through gamma

and abs. The canonizer for arbitrary terms, sig(a) (used in 9 and 10), is
defined as gamma(sigma(abs(a))), where sigma is the given canonizer for pure
terms. Model M is a σ-model if M |= σ(a) = a for all a, and a = b is σ-
unsatisfiable (formalized as the PVS predicate unsatisfiable) if M,ρ 6|= a = b
for all M and ρ.

Solver. A solver solve is another parameter to the algorithm. A valid solver
must be such that solve(a = b) either returns ⊥ when a = b is σ-unsatisfiable,
or returns a (possibly empty) list S of n equalities of the form xi = ti for
1 ≤ i ≤ n, where xi ∈ vars(a = b) xi 6≡ xj for i 6= j, xi 6∈ vars(tj), ti is canonical
(σ(ti) = ti), for 1 ≤ x, y ≤ n, and a = b and S are σ-equivalent: for all σ-models
M and assignments ρ over the variables in a and b, M,ρ |= a = b iff there is an
assignment ρ′ extending ρ, over the variables in S, a, and b, such that M,ρ′ |= S.

The notion of a solution for pure term equalities is formalized as the pred-
icate solve(n, dd, S) for an index n, an equality dd, and a solution list S.
The predicate checks that dd is satisfiable, the solution list of equalities S is
a well-formed solution that is σ-equivalent (formalized as the PVS predicate
sig equivalent?) to dd. Any variables in S not in dd must be of index above n.

8solve(n, dd, S): bool =

IF unsatisfiable(dd) THEN

FALSE

ELSE

new_vars_above(n, dd)(S) AND

check_solution(dd)(S) AND

sig_equivalent?(dd, S)

ENDIF

8

 48

A pure term solver is easily extended to one that works on terms. A given
solver solv is typed so that solv(m, dd) returns a dependent record r with
fields n and s, where r‘n is an index that is at least m and r‘s is either bottom
or of the form up(S) for a solution list of equalities S that is well-typed in r‘n.

Canonical Forms. The operation norm(S)(a) (represented as norm(S)(a)) for
a canonizer sig, is informally defined as σ(S[a]). The definition of norm is used to
show that if solve(m, aa, S) holds, then norm(S)(lhs(aa)) = norm(S)(rhs(aa)),
and to define the composition of two equality lists R and S as R o S.

9norm(S)(a): syntax = sig(replace_solvables(S)(a))

o(R, S): RECURSIVE eqlist =

CASES R OF

null: S,

cons(aa, T): cons(eq(lhs(aa), norm(S)(rhs(aa))), T o S)

ENDCASES

MEASURE length(R)

Since composition is defined recursively, its definition includes a termination
measure length(R) that is used to generate termination proof obligations. The
definitions above are used to prove the associativity of composition and the
claim: norm(R o S)(a) = norm(S)(norm(R)(a)).

The operation lookup(S)(a) is defined so that if a is a variable, then it re-
turns apply(S)(a) which is the formalization of S(a). When a is an application,
then lookup is defined to scan S till it finds an equality whose left-hand side is
of the form f(a1, . . . , an), where f(norm(S)(a1), . . . ,norm(S)(an)) ≡ a.5

The canonizer can(S)(a) is then defined in terms of the lookup operation.

10can(S)(a): RECURSIVE syntax =

CASES a OF

v(i): apply(S)(a),

app(ff, args):

IF intheory?(a) THEN

sig(app(ff, LAMBDA (i:arity(ff)): can(S)(args(i))))

ELSE

lookup(S)(app(ff, LAMBDA (i:arity(ff)): can(S)(args(i))))

ENDIF

ENDCASES

MEASURE rank(a)

Congruence. Congruence with respect to a solution set S, f(a1, . . . , an) S∼
f(b1, . . . , bn), is defined to hold exactly when norm(S)(ai) ≡ norm(S)(bi) for
1 ≤ i ≤ n. This is captured formally by the predicate congruent(S)(a, b).
5 This definition of lookup is slightly different from that of RS which uses S(ai)

instead of norm(S)(ai). The RS definition requires keeping dom(S) subterm-closed,
whereas we only require closure under the uninterpreted subterms. Our definition is
executable in contrast to the RS definition which uses Hilbert’s epsilon operator.

9

 49

11congruent(S)(a, b): bool =

app?(a) AND

app?(b) AND

func(a) = func(b) AND

(FORALL (i:arity(func(a))):

norm(S)(args(a)(i)) = norm(S)(args(b)(i)))

A solution set is congruence-closed when the right-hand sides corresponding to
any pair of congruent left-hand sides are identical.

12congruence_closed(S): bool =

(FORALL (a,b:(dom(S))): congruent(S)(a, b) IMPLIES

apply(S)(a) = apply(S)(b))

The solution set that forms the “state” of the algorithm is typed to satisfy
the invariants given by the predicate invariants(S). These invariants assert
that the left-hand sides of equalities in the solution set S must be variables or
uninterpreted terms, the uninterpreted subterms of any equality S must in the
domain of S, and any right-hand side term must be canonical, and S(a) and
norm(S)(a) must coincide for any a ∈ dom(S), among other conditions. The
predicate invariant(S) is used to define a type above tinvariants(n) which
ensures that the state is a record r consisting of an index r‘n and a solution set
r‘s which is either bottom or up(S), where S is well-typed in r‘n and satisfies
invariants(S).

The Main Procedure. The congruence closure operation cc(r) successively merges
the right-hand sides corresponding to chosen congruent pairs of left-hand side
terms in the solution set r‘s. The operation merge(m, aa, S) (used in 13
and 14) computes solv(m, aa) as a record r, returning bottom if r‘s is
bottom, and the record (# n := r‘n, s := S o down(r‘s)#), otherwise, where
down(up(R)) is R. The return type of cc ensures that cc(r)‘s is bottom when
r‘s is bottom and the cc(r)‘s satisfies the invariants spelled out above when it
is different from bottom. The termination of cc, a significant step in the proof, is
established by showing that the number of equivalence classes of uninterpreted
terms in the domain of r‘s decreases with each recursive call. The invariants on
the solution set play a crucial role in proving termination.

13cc(r): RECURSIVE {s : above_tinvariants(r‘n) | bottom?(r‘s)

IMPLIES bottom?(s‘s)} =

CASES r‘s OF

bottom: tbottom,

up(T) : IF (NOT congruence_closed(T))

THEN cc(merge(r‘n, apply(T)(choose(congruent_pair?(T))), T))

ELSE r

ENDIF

ENDCASES

MEASURE cc_rank(r)

The assert(r, aa) operation places aa in canonical form as aa’, then expands
r‘s (if r‘s is up(T)) with dummy identities for the new subterms in aa’ as

10

 50

expand(T, aa’). It then merges aa’ into this expanded solution set and applies
congruence-closure cc to the result.

14assert((r:{r:tinvariants | up?(r‘s) IMPLIES

congruence_closed(down(r‘s))}),
(aa:typed_equality(r‘n))):

{s:above_tinvariants(r‘n) | up?(s‘s) IMPLIES

congruence_closed(down(s‘s))} =

CASES r‘s OF

bottom: tbottom,

up(T): cc(merge(r‘n, can(T)(aa), expand(T, can(T)(aa))))

ENDCASES

Finally, process(m, S) returns a record consisting of a number n and a well-
typed solution in n which may be bottom. The type of process(m, S) ensures
that any solution returned is congruence-closed.

15process(m, (S:typed_eqlist(m))): RECURSIVE

{r:above_tinvariants(m) | up?(r‘s) IMPLIES

congruence_closed(down(r‘s))} =

CASES S OF

null : (# n := m, s := up(null)#),

cons(aa, T): IF up?(process(m, T)‘s)

THEN assert(process(m, T), aa)

ELSE tbottom

ENDIF

ENDCASES

MEASURE length(S)

The type and termination proof obligations generated by the PVS typechecker
corresponding to the subtype constraints and measures given with the definitions
of process, cc, and other related definitions, ensure the well-typedness and
termination of process.

4 Verifying Shostak’s Algorithm in PVS

The algorithm verifies a sequent T ` a = b by computing S = process(T).
The sequent is considered valid if either S = ⊥ or can(S)(a) ≡ can(S)(b). For
the soundness of the procedure is established relative to a proof system whose
inference rules characterize when a sequent T ` a = b is derivable. We prove
that the following are equivalent:

1. If process(T) = S, then S = ⊥ or can(S)(a) ≡ can(S)(b).
2. T ` a = b is derivable.
3. T ` a = b is σ-valid, i.e., valid in all σ-models.

The implication from (1) to (2) is the soundness argument. The implication
from (2) to (3) validates the soundness of the proof system with respect to

11

 51

σ-models. The implication from (3) to (1) establishes the completeness of the
decision procedure.

For verifying soundness, we first formally define the class of provable sequents
by means of an inductive definition of a predicate has proof?(m, T, aa) for
an index m, a list of equalities T, and an equality aa.

16has_proof?(m,

(T:typed_eqlist(m)),

(aa:typed_equality(m))): INDUCTIVE bool =

member(aa, T) OR % Axiom

lhs(aa) = rhs(aa) OR % Reflexivity

has_proof?(m, T, eq(rhs(aa), lhs(aa))) OR % Symmetry

(EXISTS (a:typed(m)): % Transitivity

has_proof?(m, T, eq(lhs(aa), a)) AND

has_proof?(m, T, eq(a, rhs(aa)))) OR

(LET a = lhs(aa), b = rhs(aa) IN % Congruency

app?(a) AND app?(b) AND

func(a) = func(b) AND

(FORALL (i:arity(func(a))):

has_proof?(m, T, eq(args(a)(i), args(b)(i))))) OR

(rhs(aa) = sig(lhs(aa))) OR % Canonization

(EXISTS (bb:typed_equality(m)), % Solve

(n:upfrom(m)), (S:typed_eqlist(n)):

solve(m, bb, S) AND

has_proof?(m, T, bb) AND

has_proof?(n, append(T, S), aa)) OR

(EXISTS (bb:typed_equality(m)): % Contradiction

unsatisfiable(bb) AND

has_proof?(m, T, bb))

The proof soundness theorem below captures the implication from (2) to
(3) above. It asserts that any provable sequent is σ-valid since the variable M
is declared to range over σ-models. It can be proved by the induction scheme
generated by the inductive definition of has proof?.

17proof_soundness: LEMMA

(FORALL m, (T:typed_eqlist(m)), (aa:typed_equality(m)):

has_proof?(m, T, aa) IMPLIES

(FORALL M, (rho:assign(M)): satisfies(M, rho)(T, aa)))

The following two theorems correspond to the implication between (1) and (2)
above. These theorems capture the respective cases of soundness when process(m,
S) returns a valid solution or a bottom value.

18soundness_1: THEOREM

(FORALL m, (S:typed_eqlist(m)), (a, b:typed(m)):

up?(process(m, S)‘s) AND

can(down(process(m, S)‘s))(a) = can(down(process(m, S)‘s))(b)

IMPLIES has_proof?(m, S, eq(a, b)))

12

 52

19soundness_2: THEOREM

(FORALL m, (S:typed_eqlist(m)), (aa:typed_equality(m)):

bottom?(process(m, S)‘s) IMPLIES

has_proof?(m, S, aa))

Completeness is proved by constructing a canonical σ-model MR and assign-
ment ρR, where R = process(T) 6= ⊥. The bulk of the proof involves showing
that this construction does in fact yield a σ-model satisfying the equalities in
T . A crucial property for demonstrating this is confluence which asserts that
can(S)(a) = norm(S)(a) when S is congruence-closed and the uninterpreted
terms of a are included in dom(S).

20confluence: LEMMA

invariants(S) AND

congruence_closed(S) AND

subset?(U(subterm(a)), dom(S)) IMPLIES

can(S)(a) = norm(S)(a)

Completeness is then proved as the theorem below which formalizes the im-
plication from (2) to (1) above, but it is verified via proof soundness and (3).
The theorem states that when the sequent S ` a = b is derivable, then either
process(S) = ⊥ or process(S) = T and can(T)(a) = can(T)(b).

21completeness: LEMMA

(FORALL m, (S:typed_eqlist(m)), T, (aa:typed_equality(m)):

up?(process(m, S)‘s) AND

down(process(m, S)‘s) = T AND

has_proof?(m, S, aa) IMPLIES

can(T)(lhs(aa)) = can(T)(rhs(aa)))

5 Concluding Observations

Both the formalization and the verification closely follow the informal presen-
tation RS [RS01]. There were some areas where RS was found to be inadequate
or incorrect and where PVS itself was deficient.6

RS is terse about the introduction of fresh variables by the solve operation.
These variables must be fresh with respect to the entire execution of the al-
gorithm or the construction of a proof. Proof transformations like weakening
and cut require the variables generated by solve to be invariant with respect
to a certain kind of renaming.7 The bookkeeping involved in tracking the well-
formedness of terms and equalities up to a given index, occupy a substantial
6 One minor problem was already noticed prior to this verification attempt. Several

of the lemmas in the informal proof regarding the composition of solutions were
qualified with the condition that R∪S be functional, where the appropriate condition
is that R ◦ S must be functional. This was immaterial for the verification since the
definition of composition is in terms of lists and not sets.

7 A similar renaming problem arises with alpha-renaming in the lambda-calculus and
eigenvariables in sequent proofs, but the renaming issue is far more complicated

13

 53

fraction of the effort in both the formalization and proof. PVS has a judgement
mechanism that records certain typing relations for use in the typechecker, but
we were unable to use it for demonstrating that an expression well-typed in n is
also well-typed in any index above n.

Quantification over types, needed to define semantic validity, is not expressible
in PVS. We instead restricted the semantic domains to subtypes of the type of
terms since any model for terms and equalities is essentially characterized by a
partition of the term universe into equivalence classes.

A monotonicity lemma is stated in the informal proof (Lemma 3.12) as: If
R ∪ S is functional, then if R(a) ≡ R(b), then (R ◦ S)(a) ≡ (R ◦ S)(b), for any
a and b. In addition to the above-mentioned correction to the antecedent, this
lemma only holds when a and b are in dom(R). Fortunately, only the weak form
of this lemma is actually used.

In the RS proof of Lemma 5.11, it is claimed that it can also be shown that
can(S′+)(a) ≡ can(S′)(a), and similarly for b. This claim asserts that padding
the solution set S′ with reflexivity equalities on the subterms from can(S′)(a),
does not affect the value of can(S′)(a). The claim is in fact valid, but the proof
is not all that obvious.

Despite the flaws identified above, the RS proofs held up quite well to the
rigors of formal scrutiny. We were actually operating from a draft document
that contained proofs of lemmas that were given without proof in the published
version. Once the formalization challenges were overcome, it was possible to make
steady progress in the mechanical verification of the proofs. The procedure as
we have defined it is not executable since it uses a choice operator. Further work
is needed to derive efficiently executable versions of the verified algorithm while
preserving its correctness.

The formalization and proof occupied four months of work with PVS carried
out entirely by the first author.8 The proof involves 68 theories, 120 definitions,
192 TCCs (typing and termination proof obligations), 594 lemmas, and the proof
checking time is 2,265 seconds on a 1-Gigahertz Pentium 3. There are roughly
6,200 tokens in the detailed informal presentation as measured by a word count
of the text file generated from the LaTeX input. There are approximately 13,000
tokens in the PVS specification, and over 25,000 tokens in the PVS proofs. The
proof is highly interactive. We are currently working on improving the degree of
mechanization in various ways. The level of effort indicates that the certification
of complex decision procedures remains a tough challenge.

References

[BM79] R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, New
York, NY, 1979.

here. The variable indices affect the type and the well-typedness of equalities and
proofs so that renaming is not a local operation.

8 The first author already had prior experience with PVS having used it for two
substantial proof developments[FM01b,FM01a].

14

 54

[BM81] R. S. Boyer and J S. Moore. Metafunctions: Proving them correct and
using them efficiently as new proof procedures. In R. S. Boyer and J S.
Moore, editors, The Correctness Problem in Computer Science. Academic
Press, London, 1981.

[CLS96] David Cyrluk, Patrick Lincoln, and N. Shankar. On Shostak’s decision pro-
cedure for combinations of theories. In M. A. McRobbie and J. K. Slaney,
editors, Automated Deduction—CADE-13, volume 1104 of Lecture Notes
in Artificial Intelligence, pages 463–477, New Brunswick, NJ, July/August
1996. Springer-Verlag.

[FM01a] J. Ford and I. A. Mason. Establishing a General Context Lemma in PVS.
In Proceedings of the 2nd Australasian Workshop on Computational Logic,
AWCL’01 , 2001. submitted.

[FM01b] J. Ford and I. A. Mason. Operational techniques in PVS—a preliminary
evaluation. In Proceedings of the Australasian Theory Symposium, CATS
’01, Gold Coast, Queensland, Australia, January–February 2001.

[FORS01] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: Integrated Can-
onization and Solving. In G. Berry, H. Comon, and A. Finkel, editors,
Computer-Aided Verification, CAV ’2001, volume 2102 of Lecture Notes
in Computer Science, pages 246–249, Paris, France, July 2001. Springer-
Verlag.

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mechanized
Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer-Verlag, 1979.

[NO79] G. Nelson and D. C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Transactions on Programming Languages and Systems,
1(2):245–257, 1979.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification sys-
tem. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, June 1992. Springer-Verlag.

[RS01] Harald Rueß and Natarajan Shankar. Deconstructing Shostak. In 16th An-
nual IEEE Symposium on Logic in Computer Science, pages 19–28, Boston,
MA, July 2001. IEEE Computer Society.

[Sha85] N. Shankar. Towards mechanical metamathematics. Journal of Automated
Reasoning, 1(4):407–434, 1985.

[Sha99] N. Shankar. Efficiently executing PVS. Project report, Computer Science
Laboratory, SRI International, Menlo Park, CA, November 1999. Available
at http://www.csl.sri.com/shankar/PVSeval.ps.gz.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the
ACM, 31(1):1–12, January 1984.

[Thé98] Laurent Théry. A certified version of Buchberger’s algorithm. In H. Kirch-
ner and C. Kirchner, editors, Proceedings of CADE-15, number 1421 in
Lecture Notes in Artificial Intelligence, pages 349–364, Berlin, Germany,
July 1998. Springer-Verlag.

[VGL00] Kumar Neeraj Verma and Jean Goubault-Larrecq. Reflecting BDDs in
Coq. Technical Report 3859, INRIA, Rocquencourt, France, January 2000.

[vHPPR98] Friedrich W. von Henke, Stephan Pfab, Holger Pfeifer, and Harald Rueß.
Case studies in meta-level theorem proving. In Jim Grundy and Malcolm
Newey, editors, Proc. Intl. Conf. on Theorem Proving in Higher Order
Logics, number 1479 in Lecture Notes in Computer Science, pages 461–
478. Springer-Verlag, September 1998.

15

 55

A Introduction to PVS

We give a very brief introduction to the PVS language and proof checker.
PVS specifications are a collection of theories. A theory can have type or in-
dividual parameters that are instantiated when the theory is imported within
another theory. A parameterized theory can include constraining assumptions
on the parameters. The instances of these assumptions corresponding to the ac-
tual parameters are generated as proof obligations when a theory instance is
imported.

A theory is a list of declarations of types, constants, and formulas. The expres-
sion language of PVS is based on simply typed higher-order logic extended with
predicate subtypes, dependent types, and recursive datatypes. PVS types consist
of the base types bool and real, and compound types constructed as tuples, as
in [bool, real], records, as in [#flag : bool, length : real#], or function types
of the form [A→B]. Predicates over a type A are of type [A→bool].

Predicate subtypes are a distinctive feature of the PVS higher-order logic.
Given a predicate p over A, {x : A | p(x)} (or, (p)) is a predicate subtype of
A consisting of those elements of A satisfying p. The type nzreal of nonzero
real can be defined as {x : real | x /= 0}. The type nat of natural numbers is
a predicate subtype of the type int of integers, which in turn is a subtype of
the subtype rat (of real) of rational numbers. Subranges can also be defined
as predicate subtypes, and arrays can be typed as functions with subranges as
domains, e.g., [below(N)→A]. The PVS typechecker generates proof obligations
(called TCCs) corresponding to predicate subtype constraints. Out-of-bounds
array accesses generate unprovable TCCs.

Dependent versions of tuple, record, and function types can be constructed
by introducing dependencies between different components of the type through
predicates. Dependent typing can be used to define a finite sequence (of arbitrary
length) as a dependent record consisting of a length and an array of the given
length [#length : nat, seq : [below(length)→T]#].

PVS expressions include variables x, constants c, applications f(a), and ab-
stractions LAMBDA (x : T) : a, conditionals IF a1 THEN a2 ELSE a3 ENDIF, tuple ex-
pressions (a1, . . . , an), tuple projections a‘i, record expressions (#l1:=a1, . . .#),
record projections a‘l, and (tuple, record, and function) updates e[a := v].

The definition of a recursive datatype can be illustrated with the list type
built from the constructors cons and null. Theories containing the relevant
axioms, induction schemes, and useful datatype operations are generated from
the datatype declaration.

1list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

16

 56

Invited paper for FLoC'02. Appears in the Proeedings of RTA'02, LNCS.Springer-VerlagCombining Shostak Theories?Natarajan Shankar and Harald Rue�SRI International Computer Siene LaboratoryMenlo Park CA 94025 USAfshankar, ruessg�sl.sri.omURL: http://www.sl.sri.om/f~shankar, ~ruessgPhone: +1 (650) 859-5272 Fax: +1 (650) 859-2844Abstrat. Ground deision proedures for ombinations of theories areused in many systems for automated dedution. There are two ba-si paradigms for ombining deision proedures. The Nelson{Oppenmethod ombines deision proedures for disjoint theories by exhangingequality information on the shared variables. In Shostak's method, theombination of the theory of pure equality with anonizable and solvabletheories is deided through an extension of ongruene losure that yieldsa anonizer for the ombined theory. Shostak's original presentation, andothers that followed it, ontained serious errors whih were orreted forthe basi proedure by the present authors. Shostak also laimed thatit was possible to ombine anonizers and solvers for disjoint theories.This laim is easily veri�able for anonizers, but is unsubstantiated forthe ase of solvers. We show how our earlier proedure an be extendedto ombine multiple disjoint anonizable, solvable theories within theShostak framework.1 IntrodutionConsider the sequent2 � ar(x)� 3 � dr (x) = f(dr (x))` f(ons(4 � ar(x)� 2 � f(dr (x)); y)) = f(ons(6 � dr(x); y)):? This work was funded by NSF Grant CCR-0082560, DARPA/AFRL ContratF33615-00-C-3043, and NASA Contrat NAS1-00079. During a phone onversationwith the �rst author on 2nd April 2001, Rob Shostak suggested that the problem ofombining Shostak solvers ould be solved through variable abstration. His sugges-tion is the key inspiration for the ombination of Shostak theories presented here.We thank Clark Barrett, Sam Owre, and Ashish Tiwari for their metiulous readingof earlier drafts. We also thank Harald Ganzinger for pointing out ertain limitationsof our original de�nition of solvability with respet to �-models. The �rst author isgrateful to the program ommittees and program hairs of the FME, LICS, and RTAonferenes at FLoC 2002 for their kind invitation.1
 57

It involves symbols from three di�erent theories. The symbol f is uninterpreted,the operations � and � are from the theory of linear arithmeti, and the pairingand projetion operations ons , ar , and dr , are from the theory of lists. Thereare two basi methods for building ombined deision proedures for disjoint the-ories, i.e., theories that share no funtion symbols. Nelson and Oppen [NO79℄gave a method for ombining deision proedures through the use of variableabstration for replaing subterms with variables, and the exhange of equalityinformation on the shared variables. Thus, with respet to the example above,deision proedures for pure equality, linear arithmeti, and the theory of listsan be omposed into a deision proedure for the ombined theory. The otherombination method, due to Shostak, yields a deision proedure for the om-bination of anonizable and solvable theories, based on the ongruene losureproedure. Shostak's original algorithm and proof were seriously awed. His al-gorithm is neither terminating nor omplete (even when terminating). Theseaws went unnotied for a long time even though the method was widely used,implemented, and studied [CLS96,BDL96,Bj�99℄. In earlier work [RS01℄, we de-sribed a orret algorithm for the basi ombination of a single anonizable,solvable theory with the theory of equality over uninterpreted terms. That or-retness proof has been mehanially veri�ed using PVS [FS02℄. The generalityof the basi ombination rests on Shostak's laim that it is possible to ombinesolvers and anonizers from disjoint theories into a single anonizer and solver.This laim is easily veri�able for anonizers, but fails for the ase of solvers.In this paper, we extend our earlier deision proedure to the ombination ofuninterpreted equality with multiple anonizable, solvable theories. The deisionproedure does not require the ombination of solvers. We present proofs for thetermination, soundness, and ompleteness of our proedure.2 PreliminariesWe introdue some of the basi terminology needed to understand Shostak-style deision proedures. Fixing a ountable set of variables X and a set offuntion symbols F , a term is either a variable x from X or an n-ary funtionsymbol f from F applied to n terms as in f(a1; : : : ; an). Equations betweenterms are represented as a = b. Let vars(a), vars(a = b), and vars(T) representthe sets of variables in a, a = b, and the set of equalities T , respetively. We areinterested in deiding the validity of sequents of the form T ` = d where andd are terms, and T is a set of equalities suh that vars(= d) � vars(T). Theondition vars(= d) � vars(T) is there for tehnial reasons. It an always besatis�ed by padding T with reexivity assertions x = x for any variables x invars(= d)� vars(T). We write ddaee for the set of subterms of a, whih inludesa. The semantis for a term a, written as M [[a℄℄�, is given relative to an inter-pretation M over a domain D and an assignment �. For an n-ary funtion f ,the interpretationM(f) of f inM is a map from Dn to D. For an uninterpreted2
 58

n-ary funtion symbol f , the interpretation M(f) may be any map from Dn toD, whereas only restrited interpretations might be suitable for an interpretedfuntion symbol like the arithmeti + operation. An assignment � is a map fromvariables in X to values in D. We de�ne M [[a℄℄� to return a value in D by meansof the following equations.M [[x℄℄� = �(x)M [[f(a1; : : : ; an)℄℄� =M(f)(M [[a1℄℄�; : : : ;M [[an℄℄�)We say that M;� j= a = b i� M [[a℄℄� =M [[b℄℄�, and M j= a = b i� M;� j= a = bfor all assignments �. We writeM;� j= S when 8a; b : a = b 2 S)M;� j= a = b,and M;� j= (T ` a = b) when (M;� j= T)) (M;� j= a = b). A sequentT ` = d is valid, written as j= (T ` = d), when M;� j= (T ` = d), for allM and �.There is a simple pattern underlying the lass of deision proedures studiedhere. Let be the state of the deision proedure as given by a set of formulas.1Let � be a family of state transformations so that we write ��! 0 if 0 is theresult of applying a transformation in � to , where vars() � vars(0) (variablepreservation). An assignment �0 is said to extend � over vars(0) � vars()when it agrees with � on all variables exept those in vars(0) � vars() forvars() � vars(0). We say that 0 preserves if vars() � vars(0) andfor all interpretations M and assignments �, M;� j= holds i� there exists anassignment �0 extending � suh thatM;�0 j= 0.2 When preservation is restritedto a limited lass of interpretations �, we say that 0 �-preserves . Note thatthe preserves relation is transitive. When the operation � is deterministi, �()represents the result of the transformation, and we all � a onservative operationto indiate that �() preserves for all . Correspondingly, � is said to be �-onservative when �() �-preserves . Let �n represent the n-fold iteration of� , then �n is a onservative operation. The omposition �2 Æ �1 of onservativeoperations �1 and �2, is also a onservative operation. The operation ��() isde�ned as � i() for the least i suh that � i+1() = � i(). The existene of suha bound i must be demonstrated for the termination of ��. If � is onservative,so is ��.If � is a onservative operation, it is sound and omplete in the sense thatfor a formula � with vars(�) � vars(), j= (` �) i� j= (�() ` �). This islear sine � is a onservative operation and vars(�) � vars().1 In our ase, the state is atually represented by a list whose elements are sets ofequalities. We abuse notation by viewing suh a state as the set of equalities orre-sponding to the union of the sets of equalities ontained in it.2 In general, one ould allow the interpretation M to be extended to M 0 in the trans-formation from to 0 to allow for the introdution of new funtion symbols, e.g.,skolem funtions. This abstrat design pattern then also overs skolemization in ad-dition to methods like prenexing, lausi�ation, resolution, variable abstration, andKnuth-Bendix ompletion. 3
 59

If ��() returns a state 0 suh that j= (0 ` ?), where ? is an unsatis�ableformula, then 0 and are both learly unsatis�able. Otherwise, if 0 is anon-ial, as explained below, j= (0 ` �) an be deided by omputing a anonialform 0[[�℄℄ for � with respet to 0.3 Congruene ClosureIn this setion, we present a warm-up exerise for deiding equality over termswhere all funtion symbols are uninterpreted, i.e., the interpretation of theseoperations is unonstrained. This means that a sequent T ` = d is valid, i.e.,j= (T ` = d) i� for all interpretations M and assignments �, the satisfationrelationM;� j= (T ` = d) holds. Whenever we write f(a1; : : : ; an), the funtionsymbol f is uninterpreted, and f(a1; : : : ; an) is then said to be uninterpreted.Later on, we will extend the proedure to allow interpreted funtion symbolsfrom disjoint Shostak theories suh as linear arithmeti and lists. The ongruenelosure proedure sets up the template for the extended proedure in Setion 5.The ongruene losure deision proedure for pure equality has been studiedby Kozen [Koz77℄, Shostak [Sho78℄, Nelson and Oppen [NO80℄, Downey, Sethi,and Tarjan [DST80℄, and, more reently, by Kapur [Kap97℄. We present theongruene losure algorithm in a Shostak-style, i.e., as an online algorithmfor omputing and using anonial forms by suessively proessing the inputequations from the set T . For ease of presentation, we make use of variableabstration in the style of the abstrat ongruene losure tehnique due toBahmair, Tiwari, and Vigneron [BTV02℄. Terms of the form f(a1; : : : ; an) arevariable-abstrated into the form f(x1; : : : ; xn) where the variables x1; : : : ; xnabstrat the terms a1; : : : ; an, respetively. The proedure shown here an beseen as a spei� strategy for applying the abstrat ongruene losure rules. InSetion 5, we make essential use of variable abstration in the Nelson{Oppenstyle where it is not merely a presentation devie.Let T = fa1 = b1; : : : ; an = bng for n � 0 so that T is empty when n = 0. Letx and y be metavariables that range over variables. The state of the algorithmonsists of a solution state S and the input equalities T . The solution state Swill be maintained as the pair (SV ;SU), where (l1; l2; : : : ; ln) represents a listwith n elements and semi-olon is an assoiative separator for list elements.The set SU then ontains equalities of the form x = f(x1; : : : ; xn) for an n-aryuninterpreted funtion f , and the set SV ontains equalities of the form x = ybetween variables. We blur the distintion between the equality a = b and thesingleton set fa = bg. Syntati identity is written as a � b as opposed tosemanti equality a = b.A set of equalities R is funtional if b � whenever a = b 2 R and a = 2 R,for any a, b, and . If R is funtional, it an be used as a lookup table forobtaining the right-hand side entry orresponding to a left-hand side expression.Thus R(a) = b if a = b 2 R, and otherwise, R(a) = a. The domain of R, dom(R)4
 60

is de�ned as fa j a = b 2 R for some bg. When R is not neessarily funtional,we use R(fag) to represent the set fb j a = b 2 R_ b � ag whih is the image offag with respet to the reexive losure of R. The inverse of R, written as R�1,is the set fb = a j a = b 2 Rg. A funtional set R of equalities an be applied asin R[a℄. R[x℄ = R(x)R[f(a1; : : : ; an)℄ = R(f(R[a1℄; : : : ; R[an℄))R[fa1 = b1; : : : ; an = bng℄ = fR[a1℄ = R[b1℄; : : : ; R[an℄ = R[bn℄gIn typial usage, R will be a solution set where the left-hand sides are all vari-ables, so that R[a℄ is just the result of applying R as a substitution to a.When SV is funtional, then S given by (SV ;SU) an also be used to omputethe anonial form S[[a℄℄ of a term a with respet to S. Hilbert's epsilon operatoris used in the form of the when operator: F (x) when x : P (x) is an abbreviationfor F (�x : P (x)); if 9x : P (x).S[[x℄℄ = SV (x)S[[f(a1; : : : ; an)℄℄ = SV (x); when x : x = f(S[[a1℄℄; : : : ; S[[an℄℄) 2 SUS[[f(a1; : : : ; an)℄℄ = f(S[[a1℄℄; : : : ; S[[an℄℄); otherwise.The set SV of variable equalities will be maintained so that vars(SV) [vars(SU) = dom(SV). The set SV partitions the variables in dom(SV) intoequivalene lasses. Two variables x and y are said to be in the same equivalenelass with respet to SV if SV (x) � SV (y). If R and R0 are solution sets and R0is funtional, then R .R0 = fa = R0[b℄ j a = b 2 Rg, and R ÆR0 = R0 [(R .R0).The set SV is maintained in idempotent form so that SV Æ SV = SV . Note thatSU need not be funtional sine it an, for example, simultaneously ontain theequations x = f(y), x = f(z), and x = g(y).We assume a strit total ordering x � y on variables. The operationorient(x = y) returns fx = yg if x � y, and returns fy = xg, otherwise.The solution state S is said to be ongruene-losed if SU (fxg) \ SU (fyg) = ;whenever SV (x) 6� SV (y). A solution set S is anonial if S is ongruene-losed,SV is funtional and idempotent, and SU is normalized, i.e., SU . SV = SU .In order to determine if j= (T ` = d), we hek if S0[[℄℄ � S0[[d℄℄ for S0 =proess(S;T), where S = (SV ;SU), SV = idT , idT = fx = x j x 2 vars(T)g,and SU = ;. The ongruene losure proedure proess is de�ned in Figure 1.Explanation. We explain the ongruene losure proedure using the valid-ity of the sequent f(f(f(x))) = x; x = f(f(x)) ` f(x) = x as an exam-ple. Its validity will be veri�ed by onstruting a solution state S0 equal toproess(SV ;SU ;T) for T = ff(f(f(x))) = x; x = f(f(x))g, SV = idT , SU = ;,and heking S0[[f(x)℄℄ � S0[[x℄℄. Note that idT is fx = xg. In proessingf(f(f(x))) = x with respet to S, the anonization step, S[[f(f(f(x))) = x℄℄5
 61

proess(S; ;) = Sproess(S; fa = bg [T) = proess(S0;T); where,S0 = lose�(merge(abstrat �(S;S[[a = b℄℄))):lose(S) = merge(S;SV (x) = SV (y));when x; y : SV (x) 6� SV (y); (SU(fxg) \ SU(fyg) 6= ;)lose(S) = S; otherwise.merge(S;x = x) = Smerge(S;x = y) = (S0V ; S0U); where x 6� y;R = orient(x = y);S0V = SV ÆR; S0U = SU . R:abstrat (S;x = y) = (S; x = y)abstrat (S; a = b) = (S0; a0 = b0);when S0; a0; b0; x1; : : : ; xn :f(x1; : : : ; xn) 2 dda = beex 62 vars(S; a = b)R = fx = f(x1; : : : ; xn)g;S0 = (SV [fx = xg; SU [R);a0 = R�1[a℄; b0 = R�1[b℄:Fig. 1. Congruene losureyields f(f(f(x))) = x, unhanged. Next, the variable abstration step om-putes abstrat�(f(f(f(x))) = x). First f(x) is abstrated to v1 yielding thestate fx = x; v1 = v1g; fv1 = f(x)g; ff(f(v1)) = xg. Variable abstrationeventually terminates renaming f(v1) to v2 and f(v2) to v3 so that S isfx = x; v1 = v1; v2 = v2; v3 = v3g; fv1 = f(x); v2 = f(v1); v3 = f(v2)g. Thevariable abstrated input equality is then v3 = x. Let orient(v3 = x) returnv3 = x. Next, merge(S; v3 = x) yields the solution state fx = x; v1 = v1; v2 =v2; v3 = xg; fv1 = f(x); v2 = f(v1); v3 = f(v2)g. The ongruene losure steplose�(S) leaves S unhanged sine there are no variables that are merged in SUand not in SV .The next input equality x = f(f(x)) is anonized as x = v2 whih an beoriented as v2 = x and merged with S to yield the new value fx = x; v1 =v1; v2 = x; v3 = xg; fv1 = f(x); v2 = f(v1); v3 = f(x)g for S. The ongruenelosure step lose�(S) now detets that v1 and v3 are merged in SU but not inSV and generates the equality v1 = v3. This equality is merged to yield the newvalue of S as fx = x; v1 = x; v2 = x; v3 = xg; fv1 = f(x); v2 = f(x); v3 = f(x)g,whih is ongruene-losed.With respet to this �nal value of the solution state S, it an be heked thatS[[f(x)℄℄ � x � S[[x℄℄. 6
 62

Invariants. The Shostak-style ongruene losure algorithm makes heavy useof anonial forms and this requires some key invariants to be preserved on thesolution state S. If vars(SV)[vars(SU) � dom(SV), then vars(S0V)[vars(S0U) �dom(S0V), when S0 is either abstrat(S; a = b) or lose(S). If S is anonial anda0 = S[[a℄℄, then SV [a0℄ = a0. If SU . SV = SU , SV [a℄ = a, and SV [b℄ = b, thenS0U . S0V = S0U where S0; a0 = b0 is abstrat(S; a = b). Similarly, if SU . SV = SU ,SV (x) � x, SV (y) � y, then S0U Æ S0V = S0U for S0 = merge(S;x = y). If SV isfuntional and idempotent, then so is S0V , where S0 is either of abstrat(S; a =b) or lose(S). If S0 = lose�(S), then S0 is ongruene-losed, and if SV isfuntional and idempotent, SU is normalized, then S0 is anonial.Variations. In the merge operation, if S0U is omputed as R[SU ℄ instead ofSU . R, this would preserve the invariant that S�1U is always funtional andSV [SU ℄ = SU . If this is the ase, the anonizer an be simpli�ed to just returnS�1U (f(S[[a1℄℄; : : : ; S[[an℄℄)).Termination. The proedure proess(S; T) terminates after eah equality inT has been asserted into S. The operation abstrat� terminates beause eahreursive all dereases the number of ourrenes of funtion appliations in thegiven equality a = b by at least one. The operation lose� terminates beauseeah invoation of the merge operation merges two distint equivalene lasses ofvariables in SV . The proess operation terminates beause the number of inputequations in T dereases with eah reursive all. Therefore the omputation ofproess(S; T) terminates returning a anonial solution set S0.Soundness and Completeness. We need to show that j= (T ` = d) ()S0[[℄℄ � S0[[d℄℄ for S0 = proess(idT ; ;; T) and vars(= d) � vars(T). Wedo this by showing that S0 preserves (idT ; ;; T), and hene j= (T ` = d) ()j= (S0 ` = d), and j= (S0 ` = d) () S0[[℄℄ � S0[[d℄℄. We an easily establishthat if proess(S; T) = S0, then S0 preserves (S; T). If a0 = b0 is obtained froma = b by applying equality replaements from S, then (S; a0 = b0) preserves(S; a = b). In partiular, j= (S ` S[[℄℄ =) holds. The following laims an thenbe easily veri�ed.1. (S; S[[a = b℄℄) preserves (S; a = b).2. abstrat(S; a = b) preserves (S; a = b).3. merge(S; a = b) preserves (S; a = b).4. lose(S) preserves S.The only remaining step is to show that if S0 is anonial, then j= (S0 ` =d) () S0[[℄℄ � S0[[d℄℄ for vars(= d) � vars(S). Sine we know that j= S0 `S0[[℄℄ = and j= S0 ` S0[[d℄℄ = d, hene j= (S0 ` = d) follows from S0[[℄℄ � S0[[d℄℄.For the only if diretion, we show that if S0[[℄℄ 6� S0[[d℄℄, then there is an inter-pretationMS0 and assignment �S0 suh thatMS0 ; �S0 j= S butMS0 ; �S0 6j= = d.A anonial term (in S') is a term a suh that S0[[a℄℄ � a. The domain DS0 istaken to be the set of anonial terms built from the funtion symbols F andvariables from vars(S0). We onstrain MS0 so that MS0(f)(a1; : : : ; an) = S0V (x)7
 63

when there is an x suh that x = f(a1; : : : ; an) 2 S0U , and f(a1; : : : ; an), other-wise. Let �S0 map x in vars(S0) to S0V (x); the mappings for the variables outsidevars(S0) are irrelevant. It is easy to see that MS0 [[℄℄�S0 = S0[[℄℄ by indution onthe struture of . In partiular, when S0 is anonial, MS0(f)(x1 : : : ; xn) = xfor x = f(x1; : : : ; xn) 2 S0U , so that one an easily verify that MS0 ; �S0 j= S0.Hene, if S0[[℄℄ 6� S0[[d℄℄, then 6j= (S0 ` = d).4 Shostak TheoriesA Shostak theory [Sho84℄ is a theory that is anonizable and solvable. We assumea olletion of Shostak theories �1; : : : ; �N . In this setion, we give a deision pro-edure for a single Shostak theory �i, but with i as a parameter. This bakgroundmaterial is adapted from Shankar [Sha01℄. Satis�ability M;� j= a = b is withrespet to i-models M . The equality a = b is i-valid, i.e., j=i a = b, if for all i-modelsM and assignments �,M [[a℄℄� =M [[b℄℄�. Similarly, a = b is i-unsatis�able,i.e., j=i a 6= b, when for all i-models M and assignments �, M [[a℄℄� 6=M [[b℄℄�. Ani-term a is a term whose funtion symbols all belong to �i and vars(a) � X[Xi.A anonizable theory �i admits a omputable operation �i on terms suhthat j=i a = b i� �i(a) � �i(b), for i-terms a and b. An i-term a is anonial if�i(a) � a. Additionally, vars(�i(a)) � vars(a) and every subterm of �i(a) mustbe anonial. For example, a anonizer for the theory �A of linear arithmeti anbe de�ned to onvert expressions into an ordered sum-of-monomials form. Then,�A(y + x+ x) � 2 � x+ y � �A(x+ y + x).A solvable theory admits a proedure solve i on equalities suh thatsolve i(Y)(a = b) for a set of variables Y with vars(a = b) � Y , returns asolved form for a = b as explained below. solve i(Y)(a = b) might ontain freshvariables that do not appear in Y . A funtional solution set R is in i-solvedform if it is of the form fx1 = t1; : : : ; xn = tng, where for j, 1 � j � n, tj isa anonial i-term, �i(tj) � tj , and vars(tj) \ dom(R) = ; unless tj � xj . Thei-solved form solve i(Y)(a = b) is either ?i, when j=i a 6= b, or is a solution setof equalities whih is the union of sets R1 and R2. The set R1 is the solved formfx1 = t1; : : : ; xn = tng with xj 2 vars(a = b) for 1 � j � n, and for any i-modelM and assignment �, we have that M;� j= a = b i� there is a �0 extending �over vars(solve i(Y)(a = b)) � Y suh that M;�0 j= xj = tj , for 1 � j � n. Theset R2 is just fx = x j x 2 vars(R1) � Y g and is inluded in order to preservevariables. In other words, solve i(Y)(a = b) i-preserves a = b. For example, asolver for linear arithmeti an be onstruted to isolate a variable on one sideof the equality through saling and anellation. We assume that the fresh vari-ables generated by solve i are from the set Xi. We take vars(?i) to be X [Xiso as to maintain variable preservation, and indeed ?i ould be represented asjust ? were it not for this ondition.We now desribe a deision proedure for sequents of the form T ` = d in asingle Shostak theory with anonizer �i and solver solve i. Here the solution state8
 64

S is just a funtional solution set of equalities in i-solved form. Given a solutionset S, we de�ne Shhaiii as �i(S[a℄). The omposition of solutions sets is de�nedso that S Æi ?i = ?i Æi S = ?i and S Æi R = R [fa = Rhhbiii j a = b 2 Sg. Notethat solved forms are idempotent with respet to omposition so that SÆiS = S.The solved form solvelose i(idT ; T) is obtained by proessing the equations inT to build up a solution set S. An equation a = b is �rst anonized with respetto S as Shhaiii = Shhbiii and then solved to yield the solution R. If R is ?i, thenT is i-unsatis�able and we return the solution state with Si = ?i as the result.Otherwise, the omposition S ÆiR is omputed and used to similarly proess theremaining formulas in T .solvelose i(S; ;) = Ssolvelose i(?i; T) = ?isolvelose i(S; fa = bg [T) = solvelose i(S0; T);where S0 = S Æi solve i(vars(S))(Shhaiii = Shhbiii)To hek i-validity, j=i (T ` = d), it is suÆient to hek that eithersolvelose i(idT ; T) = ? or S0hhiii � S0hhdiii, where S0 = solvelose i(idT ; T).Soundness and Completeness. As with the ongruene losure proedure, eahstep in solvelose i is i-onservative. Hene solvelose i is sound and omplete: ifS0 = solvelose i(S; T), then for every i-modelM and assignment �,M;� j= S[Ti� there is a �0 extending � over the variables in vars(S0) � vars(S) suh thatM;�0 j= S0. If �i(S0[a℄) � �i(S0[b℄), then M;�0 j= a = S0[a℄ = �i(S0[a℄) =�i(S0[b℄) = S0[b℄ = b, and hene M;� j= a = b. Otherwise, when �i(S0[a℄) 6��i(S0[b℄), we know by the ondition on �i that there is an i-model M and anassignment �0 suh that M [[S0[a℄℄℄�0 6= M [[S0[b℄℄℄�0. The solved form S0 dividesthe variables into independent variables x suh that S0(x) = x, and dependentvariables y where y 6= S0(y) and the variables in vars(S0(y)) are all independent.We an therefore extend �0 to an assignment � where the dependent variables yare mapped to M [[S0(y)℄℄�0. Clearly, M;� j= S0, M;� j= a = S0[a℄, and M;� j=b = S0[b℄. Sine S0 i-preserves (idT ; T), M;� j= T but M;� 6j= a = b andhene T ` a = b is not i-valid, so the proedure is omplete. The orretnessargument is thus similar to that of Setion 3 but for the ase of a single Shostaktheory onsidered here, there is no need to onstrut a anonial term modelsine j=i a = �i(a), and �i(a) � �i(b) i� j=i a = b.Canonial term model. The situation is di�erent when we wish to ombineShostak theories. It is important to resolve potential semanti inompatibilitiesbetween two Shostak theories. With respet to some �xed notion of i-validityfor �i and j-validity for �j with i 6= j, a formula A in the union of �i and �jmay be satis�able in an i-interpretation of only a spei� �nite ardinality forwhih there might be no orresponding satisfying j-interpretation for the for-mula. Suh an inompatibility an arise even when a theory �i is extended withuninterpreted funtion symbols. For example, if � is a formula with variables xand y that is satis�able only in a two-element modelM where �(x) 6= �(y), then9
 65

the set of formulas � where � = f�; f(x) = x; f(u) = y; f(y) = xg additionallyrequires �(x) 6= �(u) and �(y) 6= �(u). Hene, a model for � must have at leastthree elements, so that � is unsatis�able. However, there is no way to detetthis kind of unsatis�ability purely through the use of solving and anonization.We introdue a anonial term model as a way around suh semanti inom-patibilities. The set of anonial i-terms a suh that �i(a) � a yields a domainfor a term model Mi where Mi(f)(a1; : : : ; an) = �i(f(a1; : : : ; an)). If Mi is (iso-morphi to) an i-model, then we say that the theory �i is omposable. Note thatthe solve operation is onservative with respet to the model Mi as well, sineMi is taken as an i-model.Given the usual interpretation of disjuntion, a notion of validity is said tobe onvex when j= (T ` 1 = d1 _ : : : _ n = dn) implies j= (T ` k = dk) forsome k, 1 � k � n. If a theory �i is omposable, then i-validity is onvex. Reallthat j=i (T ` 1 = d1_ : : :_ n = dn) i� j=i (S ` 1 = d1 _ : : :_ n = dn) for S =solvelose i(idT ;T). If S = ?i, then j=i (T ` k = dk), for 1 � k � n. If S 6= ?i,then sine S i-preserves T , j=i (S ` 1 = d1_ : : :_n = dn), but (by assumption)6j=i (S ` k = dk). An assignment �S an be onstruted so that for independent(i.e., where S(x) = x) variables x 2 vars(S), �S(x) = x, and for dependentvariables y 2 vars(S), �S(y) = Mi[[S(y)℄℄�S . If for S 6= ?i, 6j=�i (S ` k = dk),then Mi; �S j= S and Mi; �S 6j= k = dk. Hene Mi; �S 6j= (S ` k = dk), for1 � k � n. This yields Mi; �S 6j= (T ` 1 = d1 _ : : :_ n = dn), ontraditing theassumption.5 Combining Shostak TheoriesWe now examine the ombination of the theory of equality over uninterpretedfuntion symbols with several disjoint Shostak theories. Examples of interpretedoperations from Shostak theories inlude + and � from the theory of linear arith-meti, selet and update from the theory of arrays, and ons , ar , and dr fromthe theory of lists. The basi Shostak ombination algorithm overs the union ofequality over uninterpreted funtion symbols and a single anonizable and solv-able equational theory [Sho84,CLS96,RS01℄. Shostak [Sho84℄ had laimed thatthe basi ombination algorithm was suÆient beause anonizers and solversfor disjoint theories ould be ombined into a single anonizer and solver fortheir union. This laim is inorret.3 We present a ombined deision proedurefor multiple Shostak theories that overomes the diÆulty of ombining solvers.Two theories �1 and �2 are said to be disjoint if they have no funtion symbolsin ommon. A typial subgoal in a proof an involve interpreted symbols fromseveral theories. Let �i be the anonizer for �i. A term f(a1; : : : ; an) is said tobe in �i if f is in �i even though some ai might ontain funtion symbols outside�i. In proessing terms from the union of pairwise disjoint theories �1; : : : ; �N ,3 The diÆulty with ombining Shostak solvers was observed by Jeremy Levitt [Lev99℄.10
 66

it is quite easy to ombine the anonizers so that eah theory treats terms inthe other theory as variables. Sine �i is only appliable to i-terms, we �rsthave to extend the anonizer �i to treat terms in �j for j 6= i, as variables. Let�i be a hosen bijetive set of equalities between the variables X and the setfaj(9j : j 6= i ^ a 2 �j)g. We treat uninterpreted funtion symbols as belongingto a speial theory �0 where �0(a) = a for a 2 �0. The extended operation �0i isde�ned below. �0i(a) = �i[�i(a0)℄; when a0 : a0 is an i-term;�i[a0℄ � a:Note that the when ondition in the above de�nition an always be satis�ed.The ombined anonizer � an then be de�ned as�(x) = x�(f(a1; : : : ; an)) = �0i(f(�(a1); : : : ; �(an))); when i : f is in �i:This anonizer is, however, not used in the remainder of the paper.We now disuss the diÆulty of ombining the solvers solve1 and solve2 for�1 and �2, respetively, into a single solver. The example uses the theory �Aof linear arithmeti and the theory �L of the pairing and projetion operationsons , ar , dr , where, somewhat nonsensially, the projetion operations alsoapply to numerial expressions. Shostak illustrated the ombination using theexample 5 + ar(x+ 2) = dr(x+ 1) + 3:Sine the top-level operation on the left-hand side is +, we an treat ar (x+2)and dr(x + 1) as variables and use solveA. This might yield a partially solvedequation of the form ar (x + 2) = dr (x + 1) � 2. Now sine the top-leveloperation on the left-hand side is from the theory of lists, we use solveL toobtain x + 2 = ons(dr (x + 1) � 2; u) with a fresh variable u. We one againapply solveA to obtain x = ons(dr (x+ 1)� 2; u)� 2. This is, however, not insolved form: the left-hand side variable ours in an interpreted ontext in itssolution. There is no way to prevent this from happening as long as eah solvertreats terms from another theory as variables. Therefore the union of Shostaktheories is not neessarily a Shostak theory.The problem of ombining disjoint Shostak theories atually has a very simplesolution. There is no need to ombine solvers. Sine the theories are disjoint, theanonizer an tolerate multiple solutions for the same variable as long as thereis at most one solution from any individual theory. This an be illustrated onthe same example: 5 + ar (x+ 2) = dr(x+ 1) + 3. By variable abstration, weobtain the equation v3 = v6, where v1 = x + 2; v2 = ar(v1); v3 = v2 + 5; v4 =x + 1; v5 = dr(v4); v6 = v5 + 3. We an separate these equations out into therespetive theories so that S is (SV ; SU ; SA; SL), where SV ontains the variableequalities in anonial form, SU is as in ongruene losure but is always ; sinethere are no uninterpreted operations in this example, and SA and SL are the11
 67

solution sets for �A and �L, respetively. We then get SV = fx = x; v1 = v1; v2 =v2; v3 = v6; v4 = v4; v5 = v5; v6 = v6g, SA = fv1 = x + 2; v3 = v2 + 5; v4 =x+ 1; v6 = v5 + 3g, and SL = fv2 = ar(v1); v5 = dr(v4)g. Sine v3 and v6 aremerged in SV , but not in SA, we solve the equality between SA(v3) and SA(v6),i.e., solveA(v2 + 5 = v5 + 3) to get v2 = v5 � 2. This result is omposed withSA to get fv1 = x+ 2; v3 = v5 + 3; v4 = x + 1; v6 = v5 + 3; v2 = v5 � 2g for SA.There are no new variable equalities to be propagated out of either SA, SL, orSV . Notie that v2 and v5 both have di�erent solved forms in SA and SL. Thisis tolerated sine the solutions are from disjoint theories and the anonizer anpik a solution that is appropriate to the ontext. For example, when anonizinga term of the form f(x) for f 2 �i, it is lear that the only relevant solution forx is the one from Si.We an now hek whether the resulting solution state veri�es the originalequation 5 + ar(x+ 2) = dr(x+ 1) + 3. In anonizing f(a1; : : : ; an) we returnSV (y) whenever the term f(Si(S[[a1℄℄); : : : ; Si(S[[an℄℄)) being anonized is suhthat y = f(Si(S[[a1℄℄); : : : ; Si(S[[an℄℄)) 2 Si for f 2 �i. Thus x+2 anonizes to v1using SA, and ar(v1) anonizes to v2 using SL. The resulting term 5+v2, usingthe solution for v2 from SA, simpli�es to v5 + 3, whih returns the anonialform v6 by using SA. On the right-hand side, x + 1 is equivalent to v4 in SA,and ar(v4) simpli�es to v5 using SL The right-hand side therefore simpli�es tov5+3 whih is anonized to v6 using SA. The anonized left-hand and right-handsides are idential.We present a formal desription of the proedure used informally in the aboveexample. We show how proess from Setion 3 an be extended to ombine theunion of disjoint solvable, anonizable, omposable theories. We assume thatthere are N disjoint theories �1,. . . , �N . Eah theory �i is equipped with aanonizer �i and solver solve i for i-terms. If we let I represent the interval[1; N ℄, then an I-model is a model M that is an i-model for eah i 2 I . Wewill ensure that eah inferene step is onservative with respet to I-models, i.e.,I-onservative. We represent the uninterpreted part of S as S0 instead of SU .The solution state S of the algorithm now onsists of a list of sets of equations(SV ; S0; S1; : : : ; SN). Here SV is a set of variable equations of the formx = y, and S0 is the set of equations of the form x = f(x1; : : : ; xn) where f isuninterpreted. Eah Si is in i-solved form and is the solution set for �i.Terms now ontain a mixture of funtion symbols that are uninterpreted orare interpreted in one of the theories �i. A solution state S is onuent if for allx; y 2 dom(SV) and i, 0 � i � N : SV (x) � SV (y) () Si(fxg) \ Si(fyg) 6= ;.A solution state S is anonial if it is onuent; SV is funtional and idempotent,i.e., SV ÆSV = SV ; the uninterpreted solution set S0 is normalized, i.e., S0.SV =S0; eah Si, for i > 0, is funtional, idempotent, i.e., Si Æi Si = Si, normalizedi.e., Si . SV = Si, and in i-solved form. The anonization of expressions withrespet to a anonial solution set S is de�ned as follows.S[[x℄℄ 4= SV (x) 12
 68

abstrat (S; x = y) = (S; x = y);abstrat (S; a = b) = (S0; a0 = b0);when S0; ; i : 2 max(dda = beei);x 62 vars(S [a = b);S0V = SV [fx = xg;S0i = Si [fx = g;S0j = Sj ; for ; i 6= ja0 = S0[[a℄℄;b0 = S0[[b℄℄:Fig. 2. Variable abstration step for multiple Shostak theoriesS[[f(a1; : : : ; an)℄℄ 4= SV (x); when i; x :i > 0; f 2 �i; x = Sfff(a1; : : : ; an)gg 2 SiS[[f(a1; : : : ; an)℄℄ 4= Sfff(a1; : : : ; an)gg; otherwise.Sfff(a1; : : : ; an)gg 4= �0i(f(Si(S[[a1℄℄); : : : ; Si(S[[an℄℄)));if f 2 �i; i > 0Sfff(a1; : : : ; an)gg 4= f(S[[a1℄℄; : : : ; S[[an℄℄); if f 2 �0:Sine variables are used to ommuniate between the di�erent theories, theanonial variable x in SV is returned when the term being anonized is knownto be equivalent to an expression a suh that y = a in Si, where x � SV (y).The de�nition of the above global anonizer is one of the key ontributions ofthis paper. This de�nition an be applied to the example above of omputingS[[5 + ar(x + 2)℄℄.Variable Abstration. The variable abstration proedure abstrat(S; a = b) isshown in Figure 2. If a is an i-term suh that a 62 X , then a is said to be apure i-term. Let dda = beei represent the set of subterms of a = b that are purei-terms. A maximal 0-term is one of the form f(x1; : : : ; xn) for f 2 �0. For i > 0,the set max (M) of maximal terms in M is de�ned to be fa 2 M ja � b _ a 62ddbee; for any b 2 Mg. In a single variable abstration step, abstrat(S; a = b)piks a maximal pure i-subterm from the anonized input equality a = b,and replaes it with a fresh variable x from X while adding x = to Si. Byabstrating a maximal pure i-term, we ensure that Si remains in i-solved form.Explanation. The proedure in Figure 3 is similar to that of Figure 1. Equa-tions from the input set T are proessed into the solution state S of the formSV ;S0; : : : ; SN . Initially, S must be anonial. In proessing the input equationa = b into S, we take steps to systematially restore the anoniity of S. The�rst step is to ompute the anonial form S[[a = b℄℄ of a = b with respet to S.It is easy to see that (S;S[[a = b℄℄) I-preserves (S; a = b).13
 69

proess(S; ;) = Sproess(S; T) = S; when i : Si = ?iproess(S; fa = bg [T) = proess(S0; T); whereS0 = lose�(mergeV (abstrat �(S; S[[a = b℄℄))):lose(S) = S; when i : Si = ?ilose(S) = S0; when S0; i; x; y :x; y 2 dom(SV);(i > 0; SV (x) � SV (y); Si(x) 6� Si(y); andS0 = mergei(S; x = y))or(i � 0; SV (x) 6� SV (y); Si(fxg) \ Si(fyg) 6= ;; andS0 = mergeV (S; SV (x) = SV (y)))lose(S) = normalize(S); otherwise.normalize(S) = (SV ; S0; S1 . SV ; : : : ; SN . SV):merge i(S; x = y) = S0; where i > 0;S0i = Si Æi solve i(vars(Si))(Si(x) = Si(y));S0j = Sj ; for i 6= j;S0V = SV :mergeV (S; x = x) = SmergeV (S; x = y) = (SV Æ R; S0 . R; S1; : : : ; SN); where R = orient(x = y):Fig. 3. Combining Multiple Shostak TheoriesThe result of the anonization step a0 = b0 is then variable abstrated asabstrat�(a0 = b0) (shown in Figure 2) so that in eah step, a maximal, purei-subterm of a0 = b0 is replaed by a fresh variable x, and the equality x = isadded to Si. This is also easily seen to be an I-onservative step. The equalityx = y resulting from the variable abstration of a0 = b0 is then merged into SVand S0. This an destroy onuene sine there may be variables w and z suhthat w and z are merged in SV (i.e., SV (w) � SV (z)) that are unmerged insome Si (i.e., Si(fwg) \ Si(fzg) = ;), or vie-versa.4 The number of variablesin dom(SV) remains �xed during the omputation of lose�(S). Conuene isrestored by lose�(S) whih �nds a pair of variables that are merged in some Sibut not in SV , and merging them in SV , or that are merged in SV and not insome Si and merging them in Si. Eah suh merge step is also I-onservative.When this proess terminates, S is one again anonial. The solution sets Siare normalized with respet to SV in order to ensure that the entries are in thenormalized form for lookup during anonization.4 For i > 0, Si is maintained in i-solved form and hene, Si(fxg) = fx; Si(x)g.14
 70

Invariants. As with ongruene losure, several key invariants are needed toensure that the solution state S is maintained in anonial form whenever it isgiven as the argument to proess . If S is anonial and a and b are anonialwith respet to S, then for (S0; a0 = b0) = abstrat(S; a = b), S0 is anonial,and a0 and b0 are anonial with respet to S0. The state abstrat(S; a = b) I-preserves (S; a = b). A solution state is said to be well-formed if SV is funtionaland idempotent, S0 is normalized, and eah Si is funtional, idempotent, and insolved form. Note that if S is well-formed, onuent, and eah Si is normalized,then it is anonial. When S is well-formed, and S0 = mergeV (S;x = y) orS0 = merge i(S;x = y), then S0 is well-formed and I-preserves (S;x = y). If Sis well-formed and ongruene-losed, and S0 = normalize(S), then S0 is well-formed and eah S0i is normalized. If S0 = normalize(S), then eah S0i is insolved form beause if x replaes y on the right-hand side of a solution set Si,then Si(y) � y sine Si is in i-solved form. By ongruene losure, we alreadyhave that Si(x) � Si(y) � y. Therefore, the uniform replaement of y by xensures that S0i(x) � x, thus leaving S in solved form. If S0 = lose�(S), whereS is well-formed, then S0 is anonial.Variations. As with ongruene losure, one S is onuent, it is safe tostrengthen the normalization step to replae eah Si by SV [Si℄. This rendersS�10 funtional, but S�1i may still be non-funtional for i > 0, sine it mightontain left-hand side variables that are loal. However, if Ŝi is taken to be Sirestrited to dom(SV), then Ŝ�1i with the strengthened normalization is fun-tional and an be used in anonization. The solutions for loal variables anbe safely disarded in an atual implementation. The anonization and variableabstration steps an be ombined within a single reursion.Termination. The operations S[[a = b℄℄ and abstrat�(S; a = b) are easily seento be terminating. The operation lose�(S) also terminates beause the sum ofthe number of equivalene lasses of variables in dom(SV) with respet to eahof the solution sets SV ; S0; S1; : : : ; SN , dereases with eah merge operation.Soundness and Completeness. We have already seen that eah of the steps:anonization, variable abstration, omposition, merging, and normalization,is I-onservative. It therefore follows that if S0 = proess(S;T), then S0 I-preserves S. Hene, if S0[[℄℄ � S0[[d℄℄, then learly j=I (S0 ` = d), and henej=I (S;T ` = d).The ompleteness argument requires the demonstration that if S0[[℄℄ 6� S0[[d℄℄,then 6j=I (S0 ` = d) when S0 is anonial. This is done by means of a on-strution of MS0 and �S0 suh that MS0 ; �S0 j= S0 but MS0 ; �S0 6j= = d. Thedomain D onsists of anonial terms e suh that S0[[e℄℄ = e. As with ongruenelosure, MS0 is de�ned so that MS0(f)(e1; : : : ; en) = S0[[f(e1; : : : ; en)℄℄. The as-signment �S0 is de�ned so that �S0(x) = SV (x). By indution on , we have thatMS0 [[℄℄�S0 = S0[[℄℄. We an also easily hek that MS0 ; �S0 j= S0.It is also the ase that MS0 is an I-model sine MS0 is isomorphi to Mifor eah i, 1 � i � N . This an be demonstrated by onstruting a bijetive15
 71

map �i between D and the domain Di orresponding to Mi so that �i(x) = a0,where �i[a0℄ = SI(x), �i(f(a1; : : : ; an)) = f(�i(a1); : : : ; �i(an)) if f 2 �i, and��1i (f(a1; : : : ; an), otherwise. It an then be veri�ed that for any f 2 �i andterms a1; : : : ; an in D, �i(MS0(f)(a1; : : : ; an)) =Mi(f)(�i(a1); : : : ; �i(an)). Thisonludes the proof of ompleteness.Convexity revisited. As in Setion 4, the term model onstrution of MS0 oneagain establishes that I-validity is onvex. In other words, a sequent j=I (T `1 = d1 _ : : : _ n = dn) i� j=I (T ` k = dk) for some k, 1 � k � n.6 ConlusionsGround deision proedures for equality are ruial for disharging the myriadproof obligations that arise in numerous appliations of automated reasoning.These goals typially ontain operations from a ombination of theories, inlud-ing uninterpreted symbols. Shostak's basi method deals only with the ombi-nation of a single anonizable, solvable theory with equality over uninterpretedfuntion symbols. Indeed, in all previous work based on Shostak's method, onlythe basi ombination is onsidered. Though Shostak asserted that the basiombination was adequate to over the more general ase of multiple Shostaktheories, this laim has turned out to be unsubstantiated. We have given here the�rst Shostak-style ombination method for the general ase of multiple Shostaktheories. The algorithm is quite simple and is supported by straightforward ar-guments for termination, soundness, and ompleteness.Shostak's ombination method, as we have desribed it, is learly an instaneof a Nelson{Oppen ombination [NO79℄ sine it involves the exhange of equal-ities between variables through the solution set SV . The added advantage of aShostak ombination is that it ombines the anonizers of the individual theoriesinto a global anonizer. The de�nition of suh a anonizer for multiple Shostaktheories is the key ontribution of this paper. The tehnique of ahieving on-uene aross the di�erent solution sets is unique to our method. Conueneis needed for obtaining useful anonial forms, and is therefore not essentialin a general Nelson{Oppen ombination. The global anonizer S[[a℄℄ an be ap-plied to input formulas to disharge queries and simplify input formulas. Theredution to anonial form with respet to the given equalities helps keep thesize of the term universe small, and makes the algorithm more eÆient thana blak box Nelson{Oppen ombination. The deision algorithm for a Shostaktheory given in Setion 4 �ts the requirements for a blak box proedure thatan be used within a Nelson{Oppen ombination. The Nelson{Oppen ombi-nation of Shostak theories with other deision proedures has been studied byTiwari [Tiw00℄, Barrett, Dill, and Stump [BDS02℄, and Ganzinger [Gan02℄, butnone of these methods inludes a general anonization proedure as is requiredfor a Shostak ombination. 16
 72

Variable abstration is also used in the ombination uni�ation proedure ofBaader and Shulz [BS96℄, whih addresses a similar problem to that of om-bining Shostak solvers. In our ase, there is no need to ensure that solutionsare ompatible aross distint theories. Furthermore, variable dependenies anbe yli aross theories so that it is possible to have y 2 vars(Si(x)) andx 2 vars(Sj(y)) for i 6= j. Our algorithm an be easily and usefully adaptedfor ombining uni�ation and mathing algorithms with onstraint solving inShostak theories.Insights derived from the Nelson{Oppen ombination method have been ru-ial in the design of our algorithm and its proof. Our presentation here is di�erentfrom that of our previous algorithm for the basi Shostak ombination [RS01℄in the use of variable abstration and the theory-wise separation of solutionsets. Our proof of the basi algorithm additionally demonstrated the existeneof proof objets in a sound and omplete proof system. This an easily be repli-ated for the general algorithm studied here. The soundness and ompletenessproofs given here are for omposable theories and avoid the use of �-models.Our Shostak-style algorithm �ts modularly within the Nelson{Oppen frame-work. It an be employed within a Nelson{Oppen ombination (as suggestedby Rushby [CLS96℄) in whih there are other deision proedures that generateequalities between variables. It is also possible to ombine it with deision pro-edures that are not disjoint, as for example with linear arithmeti inequalities.Here, the existene of a anonizer with respet to equality is useful for repre-senting inequality information in a anonial form. A variant of the proeduredesribed here is implemented in ICS [FORS01℄ in exatly suh a ombination.Referenes[BDL96℄ Clark Barrett, David Dill, and Jeremy Levitt. Validity heking for ombi-nations of theories with equality. In Mandayam Srivas and Albert Camilleri,editors, Formal Methods in Computer-Aided Design (FMCAD '96), volume1166 of Leture Notes in Computer Siene, pages 187{201, Palo Alto, CA,November 1996. Springer-Verlag.[BDS02℄ Clark W. Barrett, David L. Dill, and Aaron Stump. A generalization ofShostak's method for ombining deision proedures. In A. Armando, ed-itor, Frontiers of Combining Systems, 4th International Workshop, FroCos2002, number 2309 in Leture Notes in Arti�ial Intelligene, pages 132{146,Berlin, Germany, April 2002. Springer-Verlag.[Bj�99℄ Nikolaj Bj�rner. Integrating Deision Proedures for Temporal Veri�ation.PhD thesis, Stanford University, 1999.[BS96℄ F. Baader and K. Shulz. Uni�ation in the union of disjoint equationaltheories: Combining deision proedures. J. Symboli Computation, 21:211{243, 1996.[BTV02℄ Leo Bahmair, Ashish Tiwari, and Laurent Vigneron. Abstrat ongruenelosure. Journal of Automated Reasoning, 2002. To appear.[CLS96℄ David Cyrluk, Patrik Linoln, and N. Shankar. On Shostak's deision proe-dure for ombinations of theories. In M. A. MRobbie and J. K. Slaney, edi-17
 73

tors, Automated Dedution|CADE-13, volume 1104 of Leture Notes in Ar-ti�ial Intelligene, pages 463{477, New Brunswik, NJ, July/August 1996.Springer-Verlag.[DST80℄ P.J. Downey, R. Sethi, and R.E. Tarjan. Variations on the ommon subex-pressions problem. Journal of the ACM, 27(4):758{771, 1980.[FORS01℄ J.-C. Filliâtre, S. Owre, H. Rue�, and N. Shankar. ICS: Integrated Canoniza-tion and Solving. In G. Berry, H. Comon, and A. Finkel, editors, Computer-Aided Veri�ation, CAV '2001, volume 2102 of Leture Notes in ComputerSiene, pages 246{249, Paris, Frane, July 2001. Springer-Verlag.[FS02℄ Jonathan Ford and Natarajan Shankar. Formal veri�ation of a ombinationdeision proedure. In A. Voronkov, editor, Proeedings of CADE-19, Berlin,Germany, 2002. Springer-Verlag.[Gan02℄ Harald Ganzinger. Shostak light. In A. Voronkov, editor, Proeedings ofCADE-19, Berlin, Germany, 2002. Springer-Verlag.[Kap97℄ Deepak Kapur. Shostak's ongruene losure as ompletion. In H. Comon,editor, International Conferene on Rewriting Tehniques and Appliations,RTA `97, number 1232 in Leture Notes in Computer Siene, pages 23{37,Berlin, 1997. Springer-Verlag.[Koz77℄ Dexter Kozen. Complexity of �nitely presented algebras. In ConfereneReord of the Ninth Annual ACM Symposium on Theory of Computing, pages164{177, Boulder, Colorado, 2{4 May 1977.[Lev99℄ Jeremy R. Levitt. Formal Veri�ation Tehniques for Digital Systems. PhDthesis, Stanford University, 1999.[NO79℄ G. Nelson and D. C. Oppen. Simpli�ation by ooperating deision pro-edures. ACM Transations on Programming Languages and Systems,1(2):245{257, 1979.[NO80℄ G. Nelson and D. C. Oppen. Fast deision proedures based on ongruenelosure. Journal of the ACM, 27(2):356{364, 1980.[RS01℄ Harald Rue� and Natarajan Shankar. Deonstruting Shostak. In 16th An-nual IEEE Symposium on Logi in Computer Siene, pages 19{28, Boston,MA, July 2001. IEEE Computer Soiety.[Sha01℄ Natarajan Shankar. Using deision proedures with a higher-order logi.In Theorem Proving in Higher Order Logis: 14th International Conferene,TPHOLs 2001, volume 2152 of Leture Notes in Computer Siene, pages5{26, Edinburgh, Sotland, September 2001. Springer-Verlag. Available atftp://ftp.sl.sri.om/pub/users/shankar/tphols2001.ps.gz.[Sho78℄ R. Shostak. An algorithm for reasoning about equality. Comm. ACM,21:583{585, July 1978.[Sho84℄ Robert E. Shostak. Deiding ombinations of theories. Journal of the ACM,31(1):1{12, January 1984.[Tiw00℄ Ashish Tiwari. Deision Proedures in Automated Dedution. PhD thesis,State University of New York at Stony Brook, 2000.
18

 74

On the Confluence of Linear Shallow
Term Rewrite Systems

Guillem Godoy?, Ashish Tiwari??, and Rakesh Verma? ? ?
Technical University of Catalonia SRI International Computer Science Dept
Jordi Girona 1, Barcelona, Spain Menlo Park, CA Univ of Houston, TX
ggodoy@lsi.upc.es tiwari@csl.sri.com rmverma@cs.uh.edu

Abstract. We show that the confluence of shallow linear term rewrite systems
is decidable. The decision procedure is a nontrivial generalization of the polyno-
mial time algorithms for deciding confluence of ground and restricted non-ground
term rewrite systems presented in [13, 2]. Our algorithm hasa polynomial time
complexity if the maximum arity of a function symbol in the signature is con-
sidered a constant. We also give EXPTIME-hardness proofs for reachability and
confluence of shallow term rewrite systems.

1 Introduction

Programming language interpreters, proving equations (e.g.x3 = x implies the ring
is Abelian), abstract data types, program transformation and optimization, and even
computation itself (e.g., Turing machine) can all be specified by a set of rules, called
a rewrite system. The rules are used to replace (“reduce”) subexpressions of given ex-
pressions by other expressions (usually equivalent ones insome sense). A fundamental
property of a rewrite system is the confluence or Church-Rosser property. Informally,
confluence states that if an expressiona can be reduced (in zero or more steps) to two
different expressionsb and, then there is a common expressiond to which b and
can be reduced in zero or more steps. Confluence implies uniqueness of normal (“irre-
ducible”) forms and helps to “determinise” their search by avoiding backtracking.

In general, confluence is well-known to be undecidable; however, it is known to
be decidable for terminating systems [8] and for the subclass of arbitrary variable-free
(“ground”) systems [4, 11]. Ground systems include as a subclass the tree automata
model, which has important computer science applications.The previous decidability
proofs of confluence for ground systems [4, 11] were based on tree-automata techniques
and showed that this problem was inEXPTIME, but no nontrivial lower bounds were
known. Hence the exact complexity of this problem was open until last year, when a
series of papers [7, 2, 13, 6] culminated in a polynomial timealgorithm for this problem
for shallow and rule-linear systems, which include ground systems as a special case. In
a shallow system variables in the rules cannot appear at depth more than one. Shallow? Partially supported by the Spanish CICYT project MAVERISH ref. TIC2001-2476-C03-01.?? Research supported in part by DARPA under the MoBIES and SEC programs administered by

AFRL under contracts F33615-00-C-1700 and F33615-00-C-3043, and NSF CCR-0082560.? ? ? Research supported in part by NSF grant CCR-9732186.

 75

systems have been well-studied in other contexts [10, 3]. Linearity in [13, 6], called
rule-linearity here, means each variable can appear at mostonce in the entire rule. Thus,
commutativity (x+y = y+x) is a shallow equation butnotrule-linear, and associativity
is neither shallow nor rule-linear.

In this paper, we establish decidability of confluence for shallow systems in which
the left-hand side and right-hand side areindependentlylinear, i.e., a variable can have
two occurrences in a rule—once in each side of the rule. In fact, the decision procedure
runs in polynomial time if we assume that the maximum arity ofa function symbol in
the signature is a constant. The results in this paper subsume the shallow rule-linear
systems of [13] as a special case. The algorithm is a nontrivial generalization of the
algorithms in [2, 13]. We introduce a notion of marked terms and marked rewriting, and
then generalize the central concept of top stability in [2].The conditions to be checked
by the algorithm are also generalized and the constructionsare more involved. We also
prove that the reachability, joinability and confluence problems are allEXPTIME-hard
for shallow non-linear systems and all are known to be undecidable for linear non-
shallow systems [15], which indicates that the linearity and shallowness assumptions
are fairly tight.

1.1 Preliminaries

Let F be a (finite) set of function symbols with an arity functionarity :F ! IN .
Function symbolsf with arity(f) = n, denoted byf (n), are calledn-ary symbols
(whenn = 1, one saysunary and whenn = 2, binary). If arity(f) = 0, thenf
is a constant symbol. Let X be a set of variable symbols. The set of terms overF
andX , denoted byT (F ;X), is the smallest set containing all constant and variable
symbols such thatf(t1; : : : ; tn) is in T (F ;X) wheneverf 2 F , arity(f) = n, andt1; : : : ; tn 2 T (F ;X). A position is a sequence of positive integers. Ifp is a position
andt is a term, then bytjp we denote thesubterm oft at positionp: we havetj� = t
(where� denotes the empty sequence) andf(t1; : : : ; tn)ji:p = tijp if 1 � i � n (and
is undefined ifi > n). We also writet[s℄p to denote the term obtained by replacing
in t the subterm at positionp by the terms. For example, ift is f(a; g(b; h()); d),
thentj2:2:1 = , andt[d℄2:2 = f(a; g(b; d); d). By jsj we denote thesize(number of
symbols) of a terms: we havejaj = 1 if a is a constant symbol or a variable, andjf(t1; : : : ; tn)j = 1 + jt1j+ : : :+ jtnj. Thedepthof a terms is 0 if s is a variable or a
constant, and1+max idepth(si) if s = f(s1; : : : ; sm). Terms with depth0 are denoted
by�; �, with possible subscripts.

If ! is a binary relation on a setS, then!+ is its transitive closure, is its
inverse, and!� is its reflexive-transitive closure. Two elementss andt of S are called
joinableby!, denoteds # t, if there exists au in S such thats!� u andt!� u. The
relation! is calledconfluentor Church-Rosserif the relation � Æ !� is contained
in!� Æ �, that is, for alls, t1 andt2 in S, if s!� t1 ands !� t2, thent1 # t2. An
equivalent definition of confluence of! is that$� is contained in!� Æ �, that is,
all s andt in S such thats$� t are joinable.

A substitution� is a mapping from variables to terms. It can be homomorphically
extended to a function from terms to terms: using a postfix notation, t� denotes the
result of simultaneously replacing int everyx 2 Dom(�) by x�. Substitutions are

2

 76

sometimes written as finite sets of pairsfx1 7! t1; : : : ; xn 7! tng, where eachxi is a
variable and eachti is a term. For example, if� is fx 7! f(b; y); y 7! ag, theng(x; y)�
is g(f(b; y); a).

A rewrite rule is a pair of terms(l; r), denoted byl ! r, with left-hand side (lhs)l and right-hand side (rhs)r. A term rewrite system(TRS)R is a finite set of rewrite
rules. We say thats rewrites tot in one step at positionp (byR), denoted bys!R;p t,
if sjp = l� andt = s[r�℄p, for somel ! r 2 R and substitution�. If p = �, then the
rewrite step is said to be appliedat the topmost position(at the root) and is denoted bys!rR t; it is denoted bys!nrR t otherwise. The rewrite relation!R induced byR onT (F ;X) is defined bys!R t if s!R;p t for some positionp.

A (rewrite) derivation or proof(from s) is a sequence of rewrite steps (starting froms), that is, a sequences !R s1 !R s2 !R : : :. ThesizejRj of a TRSR of the formfl1 ! r1; : : : ; ln ! rng is jl1j+ jr1j+ : : :+ jlnj+ jrnj.
Definition 1. A termt is called

– linear if no variable occurs more than once int.
– shallowif no variable occurs int at depth greater than 1, i.e., iftjp is a variable,

thenp is a position of length zero or one.
– flat if t is a non-constant term of the formf(s1; : : : ; sn) where allsi are variables

or constants.

Definition 2. LetR be a TRS.
A terms is reachablefrom t byR if t!�R s.
Two termss andt areequivalentbyR if s$�R t.
Two termss andt are joinablebyR, denoted bys #R t, if they are joinable by!R.
A terms isR-irreducibleif there is no termt s.t.s!R t.
The TRSR is confluentif the relation!R is confluent onT (F ;X).

We assume thatR is a shallow and linear term rewrite system, that is, ifs ! t is a
rule inR, thens andt are both linear and shallow terms. Unlike previous results in [13,
6], the termss andt are allowed to share variables.

2 Confluence of Shallow and Linear Rewrite Systems

Assuming that the maximum arity of a function symbol inF is bounded by a con-
stant, we show that confluence of shallow and linear term rewrite systemR overF can
be decided in polynomial time. The proof of this fact uses suitable generalizations of
the techniques in [2, 13]. In Section 2.1 we argue that without loss of generality, we
can restrict the signatureF to contain exactly one function symbol with nonzero arity.
Thereafter, we transform the rewrite systemR into a flat rewrite system in Section 2.2.
The flat linear term rewrite system is saturated under ordered chaining inference rule in
Section 2.3 to construct a rewrite closure, which has several useful properties. The rest
of the proof relies on the notion of top-stable and marked top-stable terms (Section 2.4),
the ability to compute these sets (Section 2.5), and relating confluence of a saturated flat
linear rewrite system to efficiently checkable properties over these sets (Section 2.6).

3

 77

2.1 Simplifying the Signature

Terms over an arbitrary signatureF can be encoded by terms over a signatureF 0
containing at most one function symbol with non-zero arity.We may assume thatF
contains at least one constante that does not appear inR.

Proposition 1. There exists an injective mapping� from terms over an arbitraryF to
terms over a signatureF 0 containing exactly one function symbol (with non-zero fixed
arity) such that ifR0 is defined asf�(s) ! �(t) : s ! t 2 Rg, thenR is confluent if,
and only if,R0 is confluent.

Proof. (Sketch) Letm be one plus the maximum arity of any function symbol inF .
Define the new signatureF 0 asF 0 = fh(0) : h(l) 2 F ; l > 0g [ff (m)g [f(0) : (0) 2 Fg;
wheref is a new symbol. Define the map� as follows: for eachh 2 F with arity l > 0,�(h(t1; : : : ; tl)) = f(�(t1); : : : ; �(tl); e; : : : ; e; h)
where the number ofe’s above equalsm � l � 1, and for each 2 F with arity 0,�() = . The mapping� is clearly injective, but not surjective. We can classify terms
overF 0 into type1 and type2 terms (using a simple sorted signature) so that terms of
type1 exactly correspond toRange(�). It is easy to see that there is a bijective corre-
spondence between proofs inR and proofs inR0 over terms inRange(�). Combining
this observation with a result in [16], which states that proving confluence for arbitrary
terms over the signature is equivalent to proving confluenceof the well-typed terms
according to any many-sorted discipline which is compatible with the rewrite system
under consideration, it follows thatR is confluent iffR0 is confluent.

2.2 Flat Representation

In the transformation described in Section 2.1, the properties of being linear and
shallow are preserved. We next flatten the term rewrite system so that the depth of each
term is at most one. In particular, given a linear shallow term rewrite systemR, it can
be transformed so that each rule inR is of the formf(�1; : : : ; �m)! (F) ! f(�1; : : : ; �m) (B)f(�1; : : : ; �m)! x (Fx) x! f(�1; : : : ; �m) (Bx)f(�1; : : : ; �m)! f(�1; : : : ; �m) (Pf) �! � (P)
where each�i; �i; �; � is a depth 0 term (i.e., either a variable or a constant). Rules of
the formF andFx are calledforward rules and denoted byF , rules of the formB
andBx are calledbackwardrules and denoted byB, and rules of the formPf andP are
calledpermutationrules and denoted byP . Rules of the formBx are calledinsertion
rules. We call such a rewrite systemR a flat linear rewrite system.

This transformation is easily done by replacing each non-constant ground term, says, in R by a new constant, say, and adding a rules ! or ! s, depending on
whethers occurred on the left- or right-hand side ofR.

4

 78

Flatten:
u[s℄! tu[℄! t; s! t! u[s℄t! u[℄; ! s

wheres is a non-constant ground term and is a new constant.
Exhaustive application of these two rules results in a flat linear shallow rewrite sys-

tem. This transformation can be done in polynomial time, as the number of applications
of the above two rules is bounded by the size of the initial rewrite systemR. It is easily
seen to preserve confluence, see [2, 13] for instance.

2.3 Rewrite Closure

Let� order terms based on their size, that is,s � t iff jsj > jtj. An application of
anF -rule results in a smaller term, whereas application of aB-rule gives a bigger term
in this ordering.

Definition 3. A terms is size-irreducible byR if there exists no termt such thats!�R t
ands � t.
Definition 4. A derivations !�R t is said to be increasing if for all decompositionss!�R s0 !l!r;p t0 !�R t, there is no step at a prefix position ofp in t0 !�R t.

Observe that increasing derivations either have no rewritestep at position�, or only
one at the beginning of the derivation. For simplicity, we eliminate the former case by
assuming a dummy rewrite rulex ! x to be inR, which can always be applied at the� position in case there is no top step.

A flat linear rewrite system can be saturated under the following ordered chaining
inference to give an enlarged flat linear rewrite system withsome nice properties.

Ordered Chaining:
s! t w[u℄! vw[s℄� ! v� s! w[t℄ u! vs� ! w[v℄�

where� is the most general unifier oft andu, neitheru nort is a variable, ands 6� t in
the first case andv 6� u in the second. Note that these restrictions ensure that ordered
chaining preserves flatness and shallowness.

Application of ordered chaining preserves confluence. Moreover, if the maximum
aritym is a constant, then saturation under ordered chaining can beperformed in poly-
nomial time.

Lemma 1. Let R = F [B [P be a flat linear rewrite system saturated under the
ordered chaining inference rules. Ifs !�R t, then there is a proof of the forms !�FÆ !�P Æ !�B t.

Lemma 1 can be easily established using proof simplificationarguments [1]. Similar
proofs have been presented before, but for the special case of ground systems [12]
and rule-linear shallow rewrite systems [14]. The generalization to linear shallow case
is straightforward and the details are skipped here. The process of saturation, in this
context, can be interpreted as asymmetric completion [9].

5

 79

Lemma 2. LetR be a flat linear rewrite system saturated under the ordered chaining
inference rule above. Ifs is size-irreducible (or, equivalentlyF -irreducible) ands!�Rt, then there is an increasing derivations!�R t.
Example 1.If R = fx + y ! y + x; x ! 0 + xg, then the chaining inferences add
a new rulex ! x + 0 to R. An increasing derivation for0 + x !� (x + 0) + 0 is0 + x! x+ 0! (x+ 0) + 0.

2.4 Top-Stable Terms, Marked Terms, and Marked Rewriting

In the rest of the paper we assume thatR is a flat linear term rewrite system, which
is also saturated under the chaining inference rule.

Definition 5. A termt with depth greater than0 is said to betop-stableif it cannot be
reduced to a depth0 term. A depth0 term� is top-stabilizableif it is equivalent to a
top-stable term.

The following is a simple consequence of Lemma 1.
Lemma 3. The setS0 = ff�1 : : : �m : f�1 : : : �m is F -irreducibleg is the set of all
top-stable flat terms.

The confluence test relies heavily on the concept of top-stable terms and depth0
top-stabilizable terms. The basic observation is that if a top-stabilizable constant, say, occurs at a certain position in a term, sayft2 : : : tm, then this term (ft2 : : : tm)
is equivalent to a termt = ft1t2 : : : tm with the property thatt rewrites to a depth0 term viaR only if fxt2 : : : tm also does. Here,t1 is chosen to be top-stable. So,
when considering rewrites onft2 : : : tm or ft1 : : : tm, we should treat and t1 as
variables. This is roughly the intuition behind the following definitions of marked terms
and marked rewriting.

Definition 6. A markingM of a termt is a set of leaf positions int. A termt with a
markingM is denoted by(t;M).

A marked term(s;M) rewrites to(t;N) via marked rewriting ifs !l!r2R;p t
for some positionp 62 M such that, ifljp1 is a constant thenp:p1 62 M , and the new
markingN satisfies: (a) for allq disjoint withp, we haveq 2 M iff q 2 N , (b) for allp1, p2 andq such thatljp1 andrjp2 are the same variable,p:p1:q 2 M iff p:p2:q 2 N ,
and (c) no more positions are inN .

A marked flat term(s = f�1 : : : �m;M) is said to be correctly marked if for alli 2M , we have that�i is top-stabilizable.

Example 2.The marked term(0 + x; f1g), denoted as0 + x, cannot be rewritten with
the rule0 + x! x, but it can be rewritten with the rulex+ y ! y + x to x+ 0.

The notions of size-irreducible terms, increasing derivations and top-stable terms
can be adapted naturally to marked terms. All the arguments of Lemmas 1 and 2 are
also valid for marked rewriting, and we have:

Lemma 4. If (s;M) !�R (t;N), then there is a derivation of the form(s;M) !�FÆ !�P Æ !�B (t;N). If (s;M) is size-irreducible and(s;M) !�R (t;N), then there is
an increasing derivation(s;M)!�R (t;N).

6

 80

2.5 The SetsS1 and J1
The setS0 of top-stable flat terms can be extended with empty markings to give the

new set f(f�1 : : : �m; ;) : f�1 : : : �m 2 S0g
of marked top-stable terms, which we also denote byS0. We add new marked flat terms
to this set to get the set of all correctly marked top-stable flat terms and top-stabilizable
constants (and a variable if some variable is top-stabilizable) using the following fix-
point computation, starting with the new setS0.Sj+1 = Sj [f : $� f�1 : : : �m for some(f�1 : : : �m;M) 2 Sjg[f(f�1 : : : �m;M) : (f�1 : : : �m;M) is top-stable and8i 2M : �i 2 Sjg
Note that by Lemma 4,(f�1 : : : �m;M) is top-stable iff it is irreducible byF by
marked rewriting.

This iterative procedure of computing larger and larger subsetsSj of the set of all
marked flat terms is guaranteed to terminate in a polynomial number of steps. This is
because the total number of flat marked terms, up to variable renaming, is polynomial,
assumingm is a constant.

Lemma 5. If S1 is the fixpoint of the computation above, then, up to variablerenam-
ing, (f�1 : : : �m;M) 2 S1 iff (f�1 : : : �m;M) is top-stable and correctly marked,
and a depth0 term 2 S1 iff is top-stabilizable.

Definition 7. Two marked terms(s;M) and(t;N) are said to be structurally joinable
if (s;M) !�R (s0;M 0) and(t;N) !�R (t0; N 0) for some termss0 andt0 with the same
structure (i.e.,Pos(s0) = Pos(t0), wherePos(s0) is the set of all positions ins0) and
equivalent leaf terms (i.e., for all leaf positions1 p 2 Pos(s0), we have thats0jp andt0jp
are equivalent).

We use the following fixpoint computation to obtain some structurally joinable pairs
of marked terms.J0 = f((�; ;); (�;M)) : �$�R � and�; � are depth 0 termsgJj+1 = Jj [f((�; ;); (f�1 : : : �m;M)) :(f�1 : : : �m;M) is top-stable,�!rR fa1 : : : am; (f�1 : : : �m;M)!rR (fb1 : : : bm; N); and8i 2 f1 : : :mg eitherai = bi or ((ai; ;); (bi; N ji)) 2 Jjg
whereN ji contains the positionsp such thati:p 2 N . Note that thebi can be considered
depth0 or 1 terms, and that theai can be considered depth0 or satisfyingai = bi.
Lemma 6. If J1 is the fixpoint of above computation, then it is the set of all structurally
joinable pairs of terms of the form((�; ;); (�;M)) or ((�; ;); (f�1 : : : �m;M)), where�; � are depth0 terms, and(f�1 : : : �m;M) is a flat top-stable marked term.

1 Note that due to Proposition 1, for non-leaf positionsp 2 Pos(s0), s0jp = t0jp = f .

7

 81

2.6 The Technical Lemma and the Result

Definition 8. A pair of rules((l ! r); (l0 ! r0)) is uselessif l = x andl0 = y for some
variablesx andy that appear inr andr0, respectively, at the same non-root position.

Two top-stable marked flat terms(f�1 : : : �m;M) and(f�01 : : : �0m;M 0) are first-
step joinableif there exist(f�1 : : : �m;M) !r(l!r)� (fs1 : : : sm; N)(f�01 : : : �0m;M 0)!r(l0!r0)� (fs01 : : : s0m; N 0)
such that everysi is equivalent to its correspondings0i, and((l ! r); (l0 ! r0)) is not
useless.

Note that first-step joinability can be efficiently computed, since it is enough to consider
subtermssi ands0i of depth0 or 1: if rji is a variable not inl, we can forcerji� = r0ji�
by modifying the substitutions, and the same ifr0ji is a variable not inl0.

The polynomial time test for confluence depends on the following characterization
using the setsS1 andJ1 and the notion of first-step joinability.

Lemma 7. The rewrite systemR is confluent if, and only if,

(c1) Every pair�; � of equivalent depth0 terms is joinable,
(c2) If � $� f�1 : : : �m and(f�1 : : : �m;M) 2 S1 then(�; ;) and(f�1 : : : �m;M)

are structurally joinable, i.e.((�; ;); (f�1 : : : �m;M)) 2 J1
(c3) If (f�1 : : : �m;M) 2 S1 and(f�1 : : : �m; N) 2 S1 are such thatf�1 : : : �m $�f�1 : : : �m, then these two marked terms inS1 are first-step joinable.

Proof. (Sketch) A correctly marked flat term(f�1 : : : �m;M) can belifted to a termfs1 : : : sm by replacing the marked�i’s by equivalent top-stable andF -irreducible
termssi’s.): SupposeR is confluent. Condition (c1) follows from the definition of conflu-
ence.

Condition (c2). Suppose� $� f�1 : : : �m and (f�1 : : : �m;M) 2 S1. Using
Lemma 5, we can lift(f�1 : : : �m;M) to the termft1 : : : tm. Since(f�1 : : : �m;M)
is top-stable, it follows thatft1 : : : tm is top-stable. Now,� is equivalent toft1 : : : tm
and by confluence they are joinable. Since both are size-irreducible, there are increasing
derivations of the form� !�R u andft1 : : : tm !�R u. We can extract an increasing
derivation(f�1 : : : �m;M)!�R (u0 = u[�01℄p1 : : : [�0k℄pk ; N = fp1; : : : ; pkg) from the
latter derivation by ignoring all rewrite steps at or below marked positions. Using an
auxiliary lemma, we can show that there exists a derivation� !�R u[�001 ℄p1 : : : [�00m℄pk ,
such that�00i $�R �0i.

Condition (c3). Let (f�1 : : : �m;M) and (f�1 : : : �m; N) be marked flat terms
in S1 such thatf�1 : : : �m $�R f�1 : : : �m. Again, using Lemma 5, we can lift(f�1 : : : �m;M) and (f�1 : : : �m; N) to size-irreducible termss = fs1 : : : sm andt = ft1 : : : tm. By confluence,s and t are joinable, and hence there exist increas-
ing derivationsfs1 : : : sm !r(l!r)� fs01 : : : s0m !�;nrR u and ft1 : : : tm !r(l0!r0)�ft01 : : : t0m !�;nrR u. Such au can be chosen minimally, and consequently the pair(l ! r; l0 ! r0) is not useless. Clearly, everys0i is equivalent to the correspondingt0i.

8

 82

Now, by suitably modifying the substitutions� and�, we can get marked rewrite
steps,(f�1 : : : �m;M) !(l!r)�0 (fs001 : : : s00m;M 0) and (f�1 : : : �m; N) !(l0!r0)�0(ft001 : : : t00m; N 0), such thats00i $�R s0i $�R t0i $�R t00i . This shows that the two marked
terms(f�1 : : : �m;M) and(f�1 : : : �m; N) are first-step joinable.(: Suppose conditions (c1), (c2), and (c3) are satisfied, butR is not confluent. Letfs; tg be a witness to non-confluence, that is,s andt are equivalent, but not joinable.
We compare witnesses by a multiset extension of the ordering� defined earlier. First,
we note that boths andt can be assumed to be size-irreducible, otherwise we would
have a smaller counterexample to confluence.

If s = fs1 : : : sm, then eachsi is either top-stable or of depth0. Similarly, for the
termt. Additionally, if the top-stable subtermssi are equivalent to some depth0 terms,
then the terms can beprojectedonto a correctly marked flat term(f�1 : : : �m;M)
where either�i is the depth 0 term equivalent tosi and i 2 M , or �i = si. We
differentiate the following cases based on the form ofs andt:

Case 1.s and t are both depth0 terms: In this case, Condition (c1) implies thats
andt are joinable, a contradiction.

Case 2.s is a depth0 term� and t = ft1 : : : tm: We first claim that eachti is
equivalent to a depth0 term. If not, then w.l.o.g. lett1 not be equivalent to any depth0 term. Thent1 cannot be “used” in the proof� $�R ft1 : : : tm, and hence it can be
replaced by a new variablex in this proof to yield a new proof�0 $�R fxt2 : : : tm. If�0 andfxt1 : : : tm are not joinable, then they are a smaller witness to non-confluence,
a contradiction. If�0 and fxt1 : : : tm are joinable, then�0 = x, and� and t1 are
equivalent, but not joinable. The pairf�; t1g is a smaller witness to non-confluence, a
contradiction again.

Let (f�1 : : : �m;M) be a projection oft. This marked term is top-stable and cor-
rectly marked, and hence by Lemma 5, it is inS1. By condition (c2),(�; ;) and(f�1 : : : �m;M) are structurally joinable, and hence, there exist(�; ;) !�R (s0; ;) and(f�1 : : : �m;M)!�R (t0;M 0) such thatPos(s0) = Pos(t0), and for every leaf positionp 2 Pos(s0) we haves0jp $�R t0jp. If M 0 = fp1 : : : pkg, thent0 = t0[�ji1 ℄p1 : : : [�jik ℄pk ,
for somei1 : : : ik �M .

If we mimic the derivationf�1 : : : �m !�R t0, but now starting fromft1 : : : tm,
we obtain a derivation of the formft1 : : : tm !�R t00 = t0[ti1 ℄p1 : : : [tik ℄pk . Moreover,
eachtij is equivalent tot0jpj = �ij , and hence, for each leaf positionp of s0 we have
thats0jp andt00jp are equivalent, andsize(t00jp) < size(t). Since� andft1 : : : tm are
not joinable,s0 andt00 are not joinable, and hence, for some leaf positionp of s0 we
have thats0jp andt00jp are not joinable. For such ap, fs0jp; t00jpg is a smaller witness to
non-confluence, a contradiction.

Case 3.s = fs1 : : : sm and t = ft1 : : : tm: Using arguments similar to the pre-
vious case, we can assume that thesi’s andti’s are equivalent to depth0 terms. Let(f�1 : : : �m;M) and(f�1 : : : �m; N) be the projections ofs andt. Both these marked
terms are top-stable and correctly marked and hence, by Lemma 5, they are inS1. By
condition (c3), they are first-step joinable, i.e. there exist (f�1 : : : �m;M) !r(l1!r1)�(fs01 : : : s0m;M 0) and(f�1 : : : �m; N) !r(l2!r2)� ft01 : : : t0m; N 0) such that everys0i is
equivalent to its correspondingt0i, and((l1 ! r1); (l2 ! r2)) is not useless.

9

 83

We apply these rewrite steps to the original terms to getfs1 : : : sm !r(l1!r1)�0fs001 : : : s00m = s00 andft1 : : : tm !r(l2!r2)�0 ft001 : : : t00m = t00, by choosing�0 and�0
such that for eachi 2 f1 : : :mg, it is the case that (a) ifr1ji (r2ji) is a variable not
appearing inl1 (l2), thens00i = t00i , and (b) if not, then eithers00i (t00i) is a constant or
it coincides with one of thesj (tj) or it coincides withs (t). But it cannot happen that
boths00i andt00i coincide withs andt, respectively. This is because the rulesl1 ! r1
andl2 ! r2 are not useless.

By construction, everys00i is equivalent to its correspondingt00i . Sinces andt are not
joinable,s00 andt00 are not joinable, and hence, for somei 2 f1 : : :mg we have thats00i
andt00i are not joinable. This can only happen for case (b) above, andby the previous
observation,(s00i ; t00i) is a smaller witness to non-confluence, a contradiction.

Finally, we are ready to state the main result.

Theorem 1. Confluence of linear shallow term rewrite systems can be decided in time
polynomial in the size of the rewrite system, assuming the maximum arity of any function
symbol is bounded by a constant.

Proof. The input linear shallow rewrite system is transformed intoa flat linear rewrite
system and then it is saturated under the ordered chaining inference rules. Flattening
increases the sizejFj of the signature by a linear factor of the input size. Now, the
number of flat linear rewrite rules is bounded by a polynomialin the sizejFj of the
signature, and hence these two transformation steps run in polynomial time. Next, the
setsS1 andJ1 are computed, again using polynomial time fixpoint computations.
Finally, confluence is tested using the characterization given in Lemma 7. The three
conditions in Lemma 7 can be tested in polynomial time: (a) Equivalent depth zero
terms can be identified because equivalence testing for flat linear rewrite systems can be
efficiently done, say using standard completion modulo permutation rules. Joinability of
depth zero terms can be tested in polynomial time using simple fixpoint computations,
similar to previous work [13]. (b) It is also clear that the conditions (c2) and (c3) can be
tested in polynomial time.

Example 3.For the rewrite systemR of Example 1, the setS1 contains the termsx + y; 0 + x; x + 0; 0 + 0, where the positions of0 are marked. But the pairs(0; 0 +0); (x; 0+x); (x; x+0) are easily seen to be structurally joinable, while(x+0; 0+x)
is first-step joinable. Hence, this rewrite system is confluent.

3 Relaxing the Restrictions

The reachability, 2-joinability, and confluence problems for shallow term rewrite
systems are not known to be decidable. But, we can establish the following lower-
bounds.

Theorem 2. The reachability problem for shallow term rewrite systems is EXPTIME-
hard, even when the maximum arity is a constant.

10

 84

Proof. We reduce the problem of deciding non-emptiness of languageintersection ofn
bottom-up tree-automata to this problem. The proof is similar to the proof ofEXPTIME-
hardness of rigid-reachability of shallow terms over ground systems [5]. LetR1 be
the union of thereversedtransitions of all then tree-automata. We assume that the
tree-automata have disjoint states with accepting statesq1; q2; : : : ; qn, respectively. LetR2 = fa! g(q1; f(q2; f(q3; � � � ; f(qn�1; qn) � � �))); fxx! x; gxx! bg, whereg; f
are two new binary function symbols anda; b are two new constants. Now,a rewrites tob viaR1 [R2 iff the intersection of languages accepted by then automata is nonempty.

For shallow term rewrite systems,EXPTIME-hardness of2-joinability follows from
the hardness of reachability using the reduction in [15]. Wenext show hardness of
deciding confluence of shallow term rewrite systems by modifying the proof of Theo-
rem 2.

Theorem 3. Deciding confluence of shallow term rewrite systems isEXPTIME-hard,
even when the maximum arity is a constant.

Proof. We add additional rewrite rules to the rewrite system generated in the proof of
Theorem 2 to make the system confluent exactly whenb is reachable froma. First,
we introduce a new constant in the signatureG of the tree automata and convert all
constantsd to unary termsd(). The rules inR1 are modified to reflect this change. We
assume that some ground term can be reached from any tree-automata stateq via R1.
LetR3 = f ! a; h(x1; : : : ; xi�1; b; xi+1; : : : ; xn) ! b for all h 2 G; fxb !b; fbx ! b; gxb ! b; gbx ! bg. Now, consider the shallow term rewrite
systemR = R1 [R2 [R3 [fd ! a; d ! bg, whereR1 andR2 are as in proof of
Theorem 2 andd is a new constant in the signature. We claim without proof that R is
confluent iff then tree-automata have a non-empty language intersection.

We also note here that reachability, 2-joinability, and confluence problems are un-
decidable for linear (non-shallow) term rewrite systems [15].

4 Conclusion

In this paper we presented a polynomial time algorithm for deciding confluence of
linear shallow term rewrite systems where each variable is allowed at most two oc-
currences in a rule—one on each side. The time complexity analysis assumes that the
maximum arity of a function symbol in the signature is a constant. Our result gen-
eralizes those in [2, 13]. We also show that the reachability, joinability and confluence
problems are allEXPTIME-hard for shallow non-linear systems, and all three are known
to be undecidable for linear non-shallow systems, which indicates that our assumptions
can not be easily relaxed without considerably losing efficiency. Our technique can be
adapted to decide ground confluence of linear shallow term rewrite systems in poly-
nomial time. It is not clear whether our method can give polynomial time algorithms
to decide confluence when we have non-fixed arity or for rule-linear rewrite systems
(no variable appears twice in the whole rule) and not necessarily shallow, and this is a
matter for future work.

Acknowledgments.We would like to thank the reviewers for their helpful comments.

11

 85

References

1. L. Bachmair.Canonical Equational Proofs. Birkhäuser, Boston, 1991.
2. H. Comon, G. Godoy, and R. Nieuwenhuis. The confluence of ground term rewrite systems is

decidable in polynomial time. In42nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), Las Vegas, Nevada, USA, 2001.

3. H. Comon, M. Haberstrau, and J.-P. Jouannaud. Syntacticness, cycle-syntacticness, and shal-
low theories.Information and Computation, 111(1):154–191, 1994.

4. M. Dauchet, T. Heuillard, P. Lescanne, and S. Tison. Decidability of the confluence of finite
ground term rewrite systems and of other related term rewrite systems. Information and
Computation, 88(2):187–201, October 1990.

5. H. Ganzinger, F. Jacquemard, and M. Veanes. Rigid reachability: The non-symmetric form
of rigid E-unification.Intl. Journal of Foundations of Computer Science, 11(1):3–27, 2000.

6. Guillem Godoy, Robert Nieuwenhuis, and Ashish Tiwari. Classes of Term Rewrite Systems
with Polynomial Confluence Problems.ACM Transactions on Computational Logic (TOCL),
2002. To appear.

7. A. Hayrapetyan and R.M. Verma. On the complexity of confluence for ground rewrite
systems. InBar-Ilan International Symposium On The Foundations Of Artificial Intelli-
gence, 2001. Proceedings on the web athttp://www.math.tau.ac.il/˜nachumd/
bisfai-pgm.html .

8. D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech, edi-
tor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford,
1970.

9. A. Levy and J. Agusti. Bi-rewriting, a term rewriting technique for monotone order relations.
In C. Kirchner, editor,Rewriting Techniques and Applications RTA-93, pages 17–31, 1993.
LNCS 690.

10. R. Nieuwenhuis. Basic paramodulation and decidable theories. In11th IEEE Symposium on
Logic in Computer Science, LICS 1996, pages 473–482. IEEE Computer Society, 1996.

11. M. Oyamaguchi. The Church-Rosser property for ground term-rewriting systems is decid-
able.Theoretical Computer Science, 49(1):43–79, 1987.

12. A. Tiwari. Rewrite closure for ground and cancellative AC theories. In R. Hariharan and
V. Vinay, editors,Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FST&TCS ’2001, pages 334–346. Springer-Verlag, 2001. LNCS 2245.

13. A. Tiwari. Deciding confluence of certain term rewritingsystems in polynomial time. In
Gordon Plotkin, editor,IEEE Symposium on Logic in Computer Science, LICS 2002, pages
447–456. IEEE Society, 2002.

14. A. Tiwari. On the combination of equational and rewrite theories induced by certain
term rewrite systems. Menlo Park, CA 94025, 2002. Available at:www.csl.sri.com/
˜tiwari/combinationER.ps .

15. R. Verma, M. Rusinowitch, and D. Lugiez. Algorithms and reductions for rewriting prob-
lems. Fundamenta Informaticae, 43(3):257–276, 2001. Also in Proc. of Int’l Conf. on
Rewriting Techniques and Applications 1998.

16. H. Zantema. Termination of term rewriting: interpretation and type elimination.Journal of
Symbolic Computation, 17:23–50, 1994.

12

 86

CSL Technical Report SRI-CSL-01-02 (Rev. 2) • August, 2003

The SAL Language Manual

Leonardo de Moura
Sam Owre
N. Shankar

This report was developed and is maintained by SRI International. SRI’s part of
the SAL project is funded by DARPA/AFRL contract numbers F30602-96-C-0204
and F33615-00-C-3043.

Computer Science Laboratory • 333 Ravenswood Ave. • Menlo Park, CA 94025 • (650) 326-6200 • Facsimile: (650) 859-2844

 87

Abstract

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools
for abstraction, program analysis, theorem proving, and model checking toward the calculation of
properties (symbolic analysis) of transition systems. A key part of the SAL framework is a language
for describing transition systems. This language serves as a specification language and as the target
for translators that extract the transition system description for popular programming languages
such as Esterel, Java, and Statecharts. The language also serves as a common source for driving
different analysis tools through translators from the SAL language to the input format for the tools,
and from the output of these tools back to the SAL language.

The SAL language was originally designed in collaboration with David Dill of Stanford University
and Thomas Henzinger of the University of California at Berkeley. The version presented here is
the one currently accepted by the tools developed at SRI.

 88

Contents

Contents i

1 Introduction 1

2 A Simple Example: An N-bit Adder 3

3 The Expression Language 5

3.1 Types . 6

3.2 Expressions . 8

4 The Transition Language 11

4.1 Definitions . 11

4.2 Guarded Commands . 13

5 The Module Language 15

5.1 Base Modules . 17

5.2 State Variable Manipulation . 18

5.3 Module Composition . 18

5.4 Module Declarations . 19

6 SAL Contexts 21

6.1 Context Parameters . 22

6.2 Constant Declarations . 22

6.3 Context Declarations . 22

6.4 Assertion Declarations . 23

7 Another SAL Example: Mutual Exclusion 25

i
 89

ii CONTENTS

8 Future Work 27

8.1 SAL as an Intermediate Language . 27

8.2 A SAL Prelude . 27

8.2.1 Libraries, Importings, and Logics . 28

8.3 Conversions . 29

8.4 Empty Types . 29

8.5 Recursive Function Termination . 29

8.6 State-Dependent Types . 30

Bibliography 31

Index 33

Draft
 90

Chapter 1

Introduction

SAL stands for Symbolic Analysis Laboratory. It is a framework for combining different tools
for abstraction, program analysis, theorem proving, and model checking toward the calculation of
properties (symbolic analysis) of transition systems. A key part of the SAL framework is a language
for describing transition systems. This language serves as a specification language and as the target
for translators that extract the transition system description for popular programming languages
such as Esterel, Java, and Statecharts. The language also serves as a common source for driving
different analysis tools through translators from the SAL language to the input format for the tools,
and from the output of these tools back to the SAL language.

The basic high-level requirements on the SAL language are

1. Generality: It should be possible to effectively capture the transition semantics of a wide
variety of source languages.

2. Minimality: The language should not have redundant or extraneous features that add
complexity to the analysis. The language must capture transition system behavior without
any complicated control structures.

3. Semantic Regularity: The semantics of the language ought to be standard and straight-
forward so that it is easy to verify the correctness of the various translations with respect
to linear and branching time semantics. The semantics should be definable in a formal logic
such as PVS.

4. Language Modularity: The language should be parametric with respect to orthogonal
features such as the type/expression sublanguage, the transition sublanguage, and the module
sublanguage.

5. Compositionality: The language must have a way of defining transition system modules
that can be composed in a meaningful way. Properties of systems composed from modules
can then be derived from the individual module properties.

• Synchronous composition: In this form of composition, modules react to inputs
synchronously or in zero time, as with combinational circuitry in hardware. In order
to achieve semantic hygiene, causal loops arising in such synchronous interactions have
to be eliminated. The constraints on the language for the elimination of causal loops
should not be so onerous as to rule out sensible specifications.

1
 91

2 Introduction

• Asynchronous composition: Modules that are driven by independent clocks are mod-
eled by means of interleaving the atomic transitions of the individual modules.

We present the SAL language in stages consisting of the type system, the expression language,
the transition language, modules, synchronous and asynchronous composition of modules, and the
specification of systems. The language is largely modular in these choices in the sense that many
of the language choices can be independently modified without affecting the other choices. The
language is presented in terms of its concrete or presentation syntax but only the internal or abstract
syntax is really important for tool interaction.

The SAL language is not that different from the input languages used by various other verification
tools such as SMV [3], Murphi [4], Mocha [1], and SPIN [2]. Like these languages, SAL describes
transition systems in terms of initialization and transition commands. These can be given by
variable-wise definitions in the style of SMV or as guarded commands in the style of Murphi.

Draft
 92

Chapter 2

A Simple Example: An N-bit Adder

An N -bit ripple-carry adder module is specified from a one-bit adder module by composing a base
one-bit adder module with the synchronous multicomposition of N −1 one-bit adder modules. The
one-bit adder takes three inputs: the two input bits a and b and the carry-in bit cin, and returns
two outputs: the sum bit sum and the carry-out bit cout. See Figure 2.1. The N-bit adder takes
three inputs: the two input bit-vectors A and B and the carry-in bit carryin, and returns two
outputs: the sum vector S and the carry-out vector C. See Figure 2.2.

The adder module is definitional, as is usual for a purely combinational circuit description. This
means there are no guarded commands, and the adders are synchronously composed.

Note that the requirement that types be nonempty means that the N-bit adder cannot be used to
model a 1-bit adder. We plan on allowing empty types in the future, see Section 8.4.

adder: CONTEXT =
BEGIN
onebitadder: MODULE =
BEGIN
INPUT cin, a, b: BOOLEAN
OUTPUT cout, sum: BOOLEAN
DEFINITION
sum = (a XOR b) XOR cin ;
cout = (a AND b) OR (a AND cin) OR (b AND cin)

END;

Nbitadder [N : {n: NATURAL | n > 1}] : MODULE =
WITH INPUT A, B : ARRAY [0 .. N-1] OF BOOLEAN, carryin: BOOLEAN;

OUTPUT S, C : ARRAY [0 .. N-1] OF BOOLEAN
RENAME a TO A[0], b TO B[0], cin TO carryin,

sum TO S[0], cout TO C[0] IN
onebitadder
||
(|| (i : [1 .. N-1]):

(RENAME a TO A[i], b TO B[i], cin TO C[i-1],
sum TO S[i], cout TO C[i] IN

onebitadder));
END

3
 93

4 A Simple Example: An N-bit Adder

a

b

cin

sum

cout
adder

Figure 2.1: Module adder

adder

adder

S[0]

C[0]
B[0]

A[0]

carryin

S[1]

C[1]
A[1]

B[1]

C[0]

adder

S[N]

C[N]

C[N−1]

A[N]

B[N]

Figure 2.2: Module Nbitadder

Draft
 94

Chapter 3

The Expression Language

The conventions used in presenting the SAL grammar are that tokens are given in teletype font,
[optional] indicates that optional is optional, {category}+

, indicates one or more occurrences of
the syntactic category category separated by commas, and {category}∗, indicates zero or more
repetitions of category separated by commas. Separators other than comma can be used so that a
transition given by a set of named guarded commands separated by the choice operator [] can be
written as {NamedCommands}+

[]. Nonterminals are written in italics.

The SAL language needs to be liberal in order to accommodate translations from other source
languages. For this reason, identifiers include a large number of operators. The special symbols
are parentheses ((,)), brackets ([,]), braces ({, }), the percent sign (%), comma (,), period (.),
colon (:), semi-colon (;), single quote (’), exclamation point (!), hash (#), question mark (?), and
underscore (_). Tokens can be separated by WhiteSpace, which consists of spaces, tabs, carriage
returns, and line feeds.

SpecialSymbol := (|) | [|] | { | } | % | , | . | ; | : | ’ | ! | # | ? | _
Letter := a | . . . | z | A | . . . | Z
Digit := 0 | . . . | 9

Identifier := Letter {Letter | Digit | ? | _}∗
| {Opchar}+

Numeral := {Digit}+

An Opchar is any character that is not a Letter, Digit, SpecialSymbol, or WhiteSpace. For example,
f1_3 and +-+ are identifiers, but a+-1 is three tokens: two identifiers (a and +-), and a numeral.

The grammar is case-sensitive. The reserved words must be in upper case. The reserved words are:

AND, ARRAY, BEGIN, BOOLEAN, CLAIM, CONTEXT, DATATYPE, DEFINITION, ELSE, ELSIF,
END, ENDIF, EXISTS, FALSE, FORALL, GLOBAL, IF, IN, INITIALIZATION, INPUT, INTEGER,
LAMBDA, LEMMA, LET, LOCAL, MODULE, NATURAL, NOT, NZINTEGER, NZREAL, OBLIGATION,
OF, OR, OUTPUT, REAL, RENAME, THEN, THEOREM, TO, TRANSITION, TRUE, TYPE, WITH, XOR.

Comments in SAL are preceded by the % symbol and terminated by an end-of-line.

5
 95

6 The Expression Language

3.1 Types1

The SAL language supports the built-in basic types for booleans, natural numbers, integers, and
reals. New basic types may be introduced using uninterpreted type declarations. Types may be
used in type constructions to create subtype, subrange, array, function, tuple, and record types.
Function, tuple, and record types may be dependent. In addition to uninterpreted type declarations,
that introduce a name without a defining form, type declarations may be used to introduce names
for existing types, as well as scalars and datatypes. The grammar for types is given by

TypeDef := Type
| ScalarType
| DataType

Type := BasicType
| Name
| Subrange
| SubType
| ArrayType
| TupleType
| FunctionType
| RecordType
| StateType

BasicType := BOOLEAN | REAL | INTEGER | NZINTEGER | NATURAL | NZREAL
Name := Identifier

QualifiedName := Identifier[{ActualParameters}]!Identifier
Subrange := [Bound .. Bound]
SubType := { Identifier : Type | Expression }

Bound := Unbounded |Expression
Unbounded :=
ArrayType := ARRAY IndexType OF Type
IndexType := INTEGER |Subrange |ScalarTypeName

ScalarTypeName := Name
TupleType := [VarType , {VarType}+

,]
FunctionType := [VarType -> Type]

VarType := [Identifier :] Type
RecordType := [# {Identifier : Type}+

, #]
StateType := Module . STATE

ScalarType := {{Identifier}+
, }

DataType := DATATYPE Constructors END
Constructors := {Identifier[(Accessors)]}+

,
Accessors := {Identifier : Type}+

,

A TypeDef is a type expression that can occur as the body of a type declaration, whereas a Type is
more restrictive and circumscribes the types that can be used within an expression or a transition
system module. Two types are equivalent if they are identical modulo the renaming of bound
variables, the rearrangement of record labels, the equality of subtype predicates, and the unfolding
of the definitions of defined types that are not scalar types or datatypes. Equivalence for types
that are defined to be uninterpreted, scalar types, and datatypes is just name equivalence. Name
equivalence is not a simple concept because compound names consist of the context name, actual

1SAL types are very similar to PVS types, both syntactically and semantically. See the PVS Language Refer-
ence [5].

Draft
 96

3.1 Types 7

parameters, and the identifier. Two names are equivalent if they agree on the context name, and
the identifier, and the actual parameters, which are either types or expressions, are equivalent.
Types in SAL (as in PVS) are modeled as sets, and two types are equivalent when every element
of one is an element of the other. Thus the dependent types

[# a: INTEGER, b: {x: INTEGER | x < a} #]
[# b: INTEGER, a: {x: INTEGER | b < x} #]

are equivalent, and similarly for tuples. One way to see this equivalence is to note that each is
equivalent to the type

{r: [# a: INTEGER, b: INTEGER #] | r‘b < r‘a}

Note that in an array type, the index type must either be INTEGER, a subrange, or a scalar type.
SAL has a higher-order type system since it contains function types between arbitrary domain and
range types. SAL types need not be finite, and the REAL and INTEGER types, for example, are
infinite. The REAL type is the mathematical reals, not a floating point representation. Arrays with
infinite index and range types are also admissible.

There are a fixed set of subtyping relations among the types that naturally corresponds to a subset
relation between the denotations of these types. The subrange type [a .. b] is an abbreviation
for {x: INTEGER | a <= x AND x <= b}, [a ..] is an abbreviation for {x: INTEGER | a <=
x}, and [.. b] is an abbreviation for {x: INTEGER | x <= b}. The type NATURAL is merely
an abbreviation for {x: INTEGER | 0 <= x}. Any subrange is a subtype of a larger subrange. It
is also a subtype of INTEGER. An array (function) type A is a subtype of another array (function)
type B if the index types are identical, and the range type of A is a subtype of the range type of B.
Similarly, a record type A is a subtype of another record type B if every element of A is an element
of B, which means the label sets must be the same, though as described in type equivalence, the
corresponding types do not have to be in the subtype relation.

A StateType is a record type representing the state of the specified module. This is described in
more detail below.

All types must be checked to be nonempty through the possible generation of proof obligations
entailing nonemptiness.

Recursive datatypes can be used to define list and tree-like types. The datatype is specified by a
list of constructor operations, each with a list of accessor operations. For example, the list type of
integers is constructed as

intlist: TYPE = DATATYPE
cons(car : INTEGER, cdr : intlist),
nil

END

Recognizers are automatically generated by appending a ? to the corresponding constructor. Thus
cons? and nil? are recognizers for intlist. These may be used in definitions. For example,
length may be defined recursively2 as

2This will lead to proof obligations showing that the function is total, i.e., terminating.

Draft
 97

8 The Expression Language

length: [intlist -> NATURAL] =
LAMBDA (lst: intlist):

IF nil?(lst) THEN 0 ELSE 1 + length(cdr(lst)) ENDIF

3.2 Expressions

Expressions in the SAL language have to be type-correct with respect to the types in the type
language. The expressions consist of constants, variables, applications with Boolean, arithmetic,
and bit-vector operations, and array, function, tuple, and record selection and updates. Conditional
(if-then-else) expressions are also part of the expression language.

Expression := NameExpr
| QualifiedNameExpr
| NextVariable
| Numeral
| Application
| InfixApplication
| ArraySelection
| RecordSelection
| TupleSelection
| UpdateExpression
| LambdaAbstraction
| QuantifiedExpression
| LetExpression
| SetExpression
| ArrayLiteral
| RecordLiteral
| TupleLiteral
| Conditional
| (Expression)
| StatePred

Draft
 98

3.2 Expressions 9

NameExpr := Name
QualifiedNameExpr := QualifiedName

NextVariable := Identifier ’
Application := Function Argument

Function := Expression
Argument := ({Expression}+

,)
InfixApplication := Expression Identifier Expression
ArraySelection := Expression[Expression]

RecordSelection := Expression.Identifier
TupleSelection := Expression.Numeral

UpdateExpression := Expression WITH Update
Update := UpdatePosition := Expression

UpdatePosition := {Argument | [Expression] | .Identifier | .Numeral}+

LambdaAbstraction := LAMBDA (VarDecls) : Expression
VarDecls := {VarDecl}+

,
VarDecl := {Identifier}+

, : Type
QuantifiedExpression := Quantifier (VarDecls) : Expression

Quantifier := FORALL | EXISTS
LetExpression := LET LetDeclarations IN Expression

LetDeclarations := {Identifier : Type = Expression}+
,

SetExpression := SetListExpression |SetPredExpression
SetPredExpression := { Identifier : Type | Expression }
SetListExpression | { {Expression}+

, }
ArrayLiteral := [[IndexVarDecl] Expression]

IndexVarDecl := Identifier : IndexType
RecordLiteral := (# {RecordEntry}+

, #)
RecordEntry := Identifier := Expression
TupleLiteral := Argument
Conditional := IF Expression ThenRest

ThenRest := THEN Expression
[ElsIf]
ELSE Expression ENDIF

ElsIf := ELSIF Expression ThenRest
StatePred := Module . (INIT | TRANS)

The unary operators include boolean negation NOT, and integer minus -.

The binary operators include

• Polymorphic equality = and disequality /=. Note that since subtypes are semantically the
same as subsets, equality and disequality are defined on the maximal supertype of a type.

• Boolean operations of conjunction AND, disjunction OR, implication =>, equivalence <=>, and
exclusive-or XOR

• Real arithmetic operations of addition +, subtraction -, multiplication *, division /, and the
comparison operators <, <=, >, >=. Note that the divisor type of division is restricted to
NZREAL and the type rules generate a proof obligation if the divisor is not known to be nonzero.
The integer arithmetic operations of DIV and MOD are included in the binary operations. Both
require nonzero integers, i.e., NZINTEGER, in the divisor position and they satisfy the equation

a = b ∗ (a DIV b) + (a MOD b)

Draft
 99

10 The Expression Language

Although the parser allows any Identifier as an infix operator, it is clearly useful to have a standard
operator precedence so that expressions such as y + 1 = x AND A are not parsed nonsensically, e.g.,
as y + (1 = (x AND A)). The precedence is as follows, from lowest to highest:

<=>
=>

OR, XOR
AND
=, /=

>, >=, <, <=
OtherIdentifier

+, -
*, /

<=>, OR, XOR, AND, +, infix -, *, and / are all left-associative, => is right-associative, and the rest
are non-associative.

The LetExpression is parallel, to get the sequential form use nested LETs, e.g.,

LET a = f(b) IN
LET b = f(a) IN e

The proof obligations generated during typechecking are called type correctness conditions (TCCs).
In addition to operations with subtype domains such as division, the sources of TCCs include
expressions of subrange types, recursive datatypes, recursive definitions, and type nonemptiness.

An expression without NextVariables is called a current expression and is represented by the nonter-
minal CExpression. We will not define its grammar but it essentially corresponds to the grammar
for Expression with the occurrences of NextVariable removed.

SAL expressions contain two kinds of variables: logical variables and state variables. The state
variables are either current variables or NextVariables. SAL types and expressions are given a
semantics with respect to a model M that fixes the meanings of types, constants, and operators,
an assignment ρ of values to the free logical variables, and an assignment of values to the current
variables x and the NextVariables x′ by a pair of states 〈r, s〉. The meaning of expression e with
respect to model M, assignment ρ, and a pair of states 〈r, s〉, is given by M[[e]]ρ〈r,s〉. If variable
x has type A, then the interpretation of x in state s, s(x), must be an element of M[[A]]. If x is
a variable in the state type, then M[[x]]〈r,s〉 = r(x), and M[[x′]]〈r,s〉 = s(x). The interpretation of
types and operators are the standard ones. When expression e does not contain any NextVariables,
we write the meaning of e as M[[e]]r.

The StatePred expressions provide access to the initialization predicate and transition relations for
a given module M . In particular, M.INIT is of type [M.STATE -> BOOLEAN] and M.TRANS is of
type [M.STATE, M.STATE -> BOOLEAN].

Draft
 100

Chapter 4

The Transition Language

A transition system module consists of a state type, an invariant definition on this state type, an
initialization condition on this state type, and a binary transition relation of a specific form on the
state type. The state type is defined by four pairwise disjoint sets of input, output, global, and local
variables. The input and global variables are the observed variables of a module and the output,
global, and local variables are the controlled variables of the module. The language constructs for
defining modules from transition systems are treated in Chapter 5.

The transition rules are constraints on the current and next states of the transition. The current
variables are written as X whereas the next state variables are written as X’.

4.1 Definitions

Definitions are the basic constructs used to build up the invariants, initializations, and transitions of
a module. Definitions are used to specify the trajectory of variables in a computation by providing
constraints on the controlled variables in a transition system. For variables ranging over aggregate
data structures like records or arrays, it is possible to define each component separately. For
example,

x’ = x + 1

simply increments the state variable x, where x’ is the newstate of the variable,

y’[i] = 3

sets the new state of the array y to be 3 at index i, and to remain unchanged on all other indices,
and

z.foo.1[0] = y

constrains state variable z, which is a record whose foo component is a tuple, whose first component
in turn is an array of the same type as y.

The left-hand side of a definition is given by the nonterminal Lhs.

11
 101

12 The Transition Language

Lhs := Identifier [’] {Access}∗
Access := ArrayAccess |RecordAccess |TupleAccess

ArrayAccess := [Expression]
RecordAccess := . Identifier
TupleAccess := . Numeral

Simple definitions are of the form

SimpleDefinition := Lhs RhsDefinition
RhsDefinition := RhsExpression |RhsSelection
RhsExpression := = Expression

RhsSelection := IN Expression

For an RhsExpression, the Lhs is simply assigned the corresponding value. For an RhsSelection,
the Lhs is assigned any value satisfying the expression, which must be a predicate (a boolean-valued
LambdaAbstraction or a SetExpression). This predicate must be satisfiable; an invariant obligation
is generated if it cannot be determined to be nonempty.

Note that in an Access, all unspecified components are unchanged, thus x’[i].name = Ed is equiv-
alent to x’ = x WITH [i].name := Ed. If the given transition has multiple assignments to x, they
must all be collected to get the equivalent form, for example, the assignments

x’[0].name = Ed;
x’[1].name = Al

are equivalent to x’ = x WITH [0].name = Ed WITH [1].name = Al.

There are other restrictions on the Access. Within a given DEFINITION, INITIALIZATION, or
TRANSITION section of a module the Lhs accesses must all be unique. Thus the assignments

x’[3] = 0;
x’[f(3)] = 0

will generate a proof obligation that 3 /= f(3). Note that it does not matter that these are really
the same assignments if they are equal, the obligation will still be generated.

A transition equation in the TRANSITION section defines a NextVariable on the left-hand side in
terms of an expression that can contain NextVariable occurrences. A SimpleDefinition can occur
in the TRANSITION section of a transition system. An array index expression on the left-hand side
must not contain any state variables.

Definitions := {Definition}+
;

Definition := SimpleDefinition |ForallDefinition
ForallDefinition := (FORALL (VarDecls): Definitions)

In a transition system module, a controlled variable must be defined exactly once. It is easy to
write definitions that admit causal cycles such as:

X = NOT Y;
Y = X

Draft
 102

4.2 Guarded Commands 13

Such causal loops can lead to contradictory or meaningless definitions and have to be ruled out.
One way to avoid causal loops is by means of an ordering on the variables so that the right-hand
side of a definition can contain only those variables that are lower in the ordering. However, such
a restriction would rule out natural definitions where variables can depend on each other without
triggering a causal loop, for example

X = IF A THEN NOT Y ELSE C ENDIF
Y = IF A THEN B ELSE X ENDIF

Here there is no causal loop since X depends on Y only when A holds, and Y depends on X only
when NOT A holds. A dependency analysis generates a Boolean formula indicating the governing
conditions GC(X, Y) under which a variable X immediately depends on another variable Y. The
governing conditions are required to be current expressions. For example, GC(X, Y) for the above
definitions of X yields A. If there is no assignment defining X in terms of Y then GC(X, Y) is false.
Then GC*(X, Y) yields the governing conditions under which a variable X could indirectly depend on
a variable Y. For example, if X depends on a variable Z that in turn depends on Y, then GC*(X, Y)
is just GC(X, Y) ∨ (GC(X, Z) ∧ GC(Z, Y)). Thus, in the above definitions of X and Y, GC*(X, X)
is A ∧ ¬A. The dependency conditions can be used to generate the conditions CX under which a
variable X could depend on itself. For such dependency loops to be avoided, the condition CX must
be shown to be invariantly false in the transition system. In the above example, CX would be
the obviously unreachable assertion A ∧ ¬A. The dependency analysis (causality checks) generate
proof obligations to this effect. A similar dependency analysis can be carried out for initialization
definitions and transition definitions.

4.2 Guarded Commands

Definitions are convenient for specifying the values taken on by those controlled variables whose
transitions can be independently specified in a simple equational form. Definitions have some
drawbacks. For variables whose definitions follow a similar case structure, this case structure
has to be repeated in each of the definitions. For such controlled variables, it is convenient to
specify their initialization and transitions in terms of guarded commands. Each guarded command
consists of a guard formula and an assignment part. The guard is a boolean expression in the current
controlled (local, global, and output) variables and current and next state input variables. The
assignment part is a list of equalities between a left-hand side next state variable and a right-hand
side expression in current and next state variables.

GuardedCommand := Guard --> Assignments
Guard := Expression

Assignments := {SimpleDefinition}∗; [;]

Note that both the initializations and transitions may be specified by guarded assignments. No
variable that is defined in the Lhs of a definition can be assigned in either a guarded initialization or
transition. The initializations must not contain next state variables, whereas the transitions must
have next state variables on the left-hand side of assignments, and may have next state variables
on the right-hand side. The well-formedness checks on the guarded transitions are that the guard
must not contain controlled next state variables, i.e., X’ for some controlled variable X, since these

Draft
 103

14 The Transition Language

variables are only assigned values in the assignment part. The assignments in the assignment part
must ensure that no controlled variable is assigned more than once.

The causality checks and proof obligations corresponding to a guarded initialization or transition
are similar to those for definitions. The primary difference is that current conjuncts in the guard
can be conjoined to the the conditions when the proof obligations are generated. For example, if
there is a guarded command of the form g --> Assignments where the dependency analysis on
the combination of the Assignments and the definitions yields the conditions for a causal loop on
variable X as CX , then the conjunction g ∧ CX must be shown to be unreachable.

Note that the initialization and transition sections may contain simple definitions and/or guarded
commands. The model of execution is that when the module gets activated, one guarded transition
is chosen so that the guard formula holds in the current (and possibly next input) state, and
the transition is the conjunction of the associated guarded transition with all the definitions of the
transition section(s). If no guard is satisfied, the module may deadlock. A synchronously composed
system is deadlocked if any of its component modules is. An asynchronously composed system is
only deadlocked if all its components are. If you want to ensure a given module does not deadlock,
just make sure that there is always some guard of the module that hlods true (the ELSE clause is
useful for this).

Draft
 104

Chapter 5

The Module Language

A module is a self-contained specification of a transition system in SAL. Modules can be inde-
pendently analyzed for properties and composed synchronously or asynchronously. Here is a fairly
simple module declaration.

m : MODULE =
BEGIN
INPUT temp: INTEGER
LOCAL high: BOOLEAN, ctr: NATURAL
OUTPUT danger: BOOLEAN
DEFINITION high = i > 100
INITIALIZATION ctr = 0; danger = FALSE
TRANSITION [ctr > 3 --> danger’ = danger OR high

[] ctr <= 3 AND high --> ctr’ = ctr + 1
[] ELSE --> ctr’ = 0
]

END

Here m is a BaseModule, that is intended to monitor the temperature and indicate a problem if the
temperature stays high for too long. It declares the input variable temp, local variables high and
ctr, and output variable danger. Initially danger is FALSE and ctr is 0, and when this module is
activated it sets danger to TRUE if temp exceeds 100 more than 3 times in a row.

Once base modules are declared, they may be composed synchronously or asynchronously to yield
new modules. The grammar for module expressions is given below. The grammars for Definitions
and GuardedCommand are described in the previous chapter, but are repeated here for convenience.

15
 105

16 The Module Language

Module := BaseModule
| ModuleInstance
| SynchronousComposition
| AsynchronousComposition
| MultiSynchronous
| MultiAsynchronous
| Hiding
| NewOutput
| Renaming
| WithModule
| ObserveModule
| (Module)

BaseModule := BEGIN BaseDeclarations END
BaseDeclarations := {BaseDeclaration}∗
BaseDeclaration := InputDecl

| OutputDecl
| GlobalDecl
| LocalDecl
| DefDecl
| InitDecl
| TransDecl

InputDecl := INPUT VarDecls
OutputDecl := OUTPUT VarDecls
GlobalDecl := GLOBAL VarDecls
LocalDecl := LOCAL VarDecls
DefDecl := DEFINITION Definitions
InitDecl := INITIALIZATION {DefinitionOrCommand}+

; [;]
TransDecl := TRANSITION {DefinitionOrCommand}+

; [;]

DefinitionOrCommand := Definition
| [SomeCommands]

Definitions := {Definition}+
;

Definition := SimpleDefinition |ForallDefinition
ForallDefinition := (FORALL (VarDecls): Definitions)

SimpleDefinition := Lhs RhsDefinition
Lhs := Identifier [’] {Access}∗

Access := ArrayAccess |RecordAccess |TupleAccess
ArrayAccess := [Expression]

RecordAccess := . Identifier
TupleAccess := . Numeral

RhsDefinition := RhsExpression |RhsSelection
RhsExpression := = Expression

RhsSelection := IN Expression
SomeCommands := {SomeCommand}+

[] [[]ElseCommand]
SomeCommand := NamedCommand |MultiCommand

NamedCommand := [Identifier :] GuardedCommand
GuardedCommand := Guard --> Assignments

Guard := Expression
Assignments := {SimpleDefinition}∗; [;]

MultiCommand := ([] (VarDecls): SomeCommand)
ElseCommand := [Identifier :] ELSE --> Assignments

Draft
 106

5.1 Base Modules 17

ModuleInstance := {ModuleName |QualifiedModuleName} Name[[{Expression}+
,]]

ModuleName := Name
QualifiedModuleName := QualifiedName

SynchronousComposition := Module ||Module
AsynchronousComposition := Module []Module

MultiSynchronous := (|| (Identifier : IndexType): Module)
MultiAsynchronous := ([] (Identifier : IndexType): Module)

Hiding := LOCAL {Identifier}+
, IN Module

NewOutput := OUTPUT {Identifier}+
, IN Module

Renaming := RENAME Renames IN Module
Renames := {Lhs TO Lhs}+

,
WithModule := WITH NewVarDecls Module

NewVarDecls := {InputDecl |OutputDecl |GlobalDecl}+
;

ObserveModule := OBSERVE Module WITH Module

5.1 Base Modules

A BaseModule identifies the pairwise distinct sets of input, output, global, and local variables. This
characterizes the state of the module.

As described below, base modules also may consist of several sections. Note that the grammar
allows variables and sections to be given in any order, and there may, for example, be 3 distinct
TRANSITION sections. In every case, it is the same as if there was a prescribed order, with each
class of variable and section being the union of the individual declarations.

DEFINITION section. Definitions appearing in the DEFINITION section(s) are treated as invariants
for the system. When composed with other modules, the definitions remain true even during
the transitions of the other modules. For this reason, proof obligations may be generated for a
composition where definition sections are involved. This section is usually used to define controlled
variables whose values ultimately depend on the inputs, for example, a boolean variable that
becomes true when the temperature goes above a specified value.

Definition sections must be used with care, especially when modeling asynchronous systems, as this
means that in some sense the execution of a module on a remote machine can still be seen locally.

INITIALIZATION section. The INITIALIZATION section(s) constrain the possible initial values
for the local, global, and output declarations. Input variables may not be initialized. The
INITIALIZATION section(s) determine a state predicate that holds of the initial state of the base
module.

Definitions and guarded commands appearing in the INITIALIZATION section must not contain
any NextVariable occurrences, i.e., both sides of the defining equation must be current expressions.
Guards may refer to any variables, this acts as a form of postcondition when controlled variables
are involved. This is like backtracking: operationally a guarded initialization is selected, the as-
signments made, and if the assignments violate the guard the assignments are undone and a new
guarded initialization is selected.

Draft
 107

18 The Module Language

TRANSITION section. The TRANSITION section(s) constrain the possible next states for the local,
global, and output declarations. As this is generally defined relative to the previous state of the
module, the transition section(s) determine a state relation. Input variables may not appear on the
Lhs of any assignments. Guards may refer to any variables, even NextVariables. As with guarded
initial transitions, guards involving NextVariables have to be evaluated after the assignments have
been made, and if they are false the assignments must be undone and a new guarded transition
selected.

5.2 State Variable Manipulation

Output and global variables can be made local by the LOCAL construct. Global variables can be
made output by the OUTPUT construct. In order to avoid name clashes, variables in a module can
be renamed using the RENAME construct. When the renaming variable is an identifier, its type
can be easily inferred from the renamed variable. New state variables used for renaming can be
introduced using the WITH construct for INPUT, OUTPUT, and GLOBAL declarations. These newly
declared variables can be used in the RENAME construct to rename the variables in a given module.
The renaming should be consistent so that the input variables can be renamed only by input
variables, output variables only by output variables, and global variables only by output or global
variables. The types of the renamed and the renaming variable should also match.

5.3 Module Composition

Modules can be combined by either synchronous or asynchronous composition.

Let module Mi consists of input variables Ii, output variables Oi, global variables Gi, and lo-
cal variables Li. The module M1||M2 and M1[]M2 respectively represent the synchronous and
asynchronous composition of M1 and M2.

Variables with the same identifier are treated as identical, and it is an error to compose modules
that assign different types to the same identifier. The syntactic constraints on both synchronous
and asynchronous composition are that the output variable sets must be disjoint from the global
and output variables of the other module (O1

⋂
(O2

⋃
G2) = ∅, (O1

⋃
G1)

⋂
O2 = ∅), the local

variables must be disjoint from the other variables (L
⋂

(I
⋃

O
⋃

G) = ∅), but need not be disjoint
from each other.

The input variables I, the output variables O, global variables G, and the local variables L of
M1||M2 and M1[]M2 are given by

I = (I1

⋃
I2)− (O

⋃
G)

O = (O1

⋃
O2)

G = (G1

⋃
G2)

L = (L1

⋃
L2)

The semantics of synchronous composition is that the module M1||M2 consists of initializations that
are the combination of initializations from the two modules, and the transitions are the combinations
of the individual transitions of the two modules. The definitions of M1||M2 are simply the union

Draft
 108

5.4 Module Declarations 19

of the definitions in M1 and M2. The initializations of M1||M2 are the pairwise combination of
the initializations in M1 and M2. Two guarded initializations are combined by conjoining the
guards and by taking the union of the assignments. Let g1,i --> a1,i be an initialization from
M1 and g2,j --> a2,j be an initialization from M2. The guard g1,i might contain output variables
of M2, and similarly, guard g2,j might contain output variables of M1. For the combination to
be sensible, only at most one of these guards, say g1,i, is allowed to contain output variables of
the other module. If we take a2,j as the union of the assignments in a2,j with the initialization
definitions of M2, then we can repeatedly apply a2,j as a substitution. It should then be the case
that the repeated application a2,j

∗(g1,i) converges. The combination of the two initializations is
then a2,j

∗(g1,i) ∧ g2,j --> a1,i;a2,j . The resulting combination might not be sensible since the
conjunction of the guards could be inconsistent. The combination of the assignments a1,i;a2,j

might also be causally inconsistent and proof obligations have to be generated to ensure that such
combinations do not occur. The dependency analysis in the case of synchronous composition is
similar to that for a single module with the restriction that only cycles involving variables from
both modules need be considered.

The consistency and dependency analysis for combinations of guarded transitions in a synchronous
composition is similar to that for guarded initializations. In this manner, the synchronous com-
position M1||M2 of two modules M1 and M2 can be expressed as a single module combining the
definitions, initializations, and transitions from the individual modules. If there are n1 guarded com-
mands in M1 and n2 in M2, the composition M1||M2 could have up to n1 ∗n2 guarded commands.
Thus it is not always feasible to expand out the module corresponding to such a composition. The
expectation is that this will rarely be necessary since the modules can be individually analyzed and
the properties composed.

The semantics of asynchronous composition of two modules is given by the conjunction of the
initializations and the interleaving of the transitions of the two modules. For this purpose, the
definitions in M1 and M2 must first be eliminated by including them in the guarded initializations
and transitions. The module corresponding to M1[]M2 is obtained by combining the initializations
as in synchronous composition and taking the union of the transition definitions and the guarded
transitions. The combination of initializations can generate proof obligations but there are no new
proof obligations arising from the union of the module transitions.

The form of composition in SAL supports a compositional analysis in the sense that any module
properties expressed in linear-time temporal logic or in the more expressive universal fragment of
CTL* are preserved through composition. A similar claim holds for asynchronous composition with
respect to stuttering invariant properties where a stuttering step is one where the local and output
variables of the module remain unchanged.

The causality analysis for synchronous multicompositions is carried out inductively by unfolding
the multicomposition into a composition of a single module and a smaller multicomposition.

5.4 Module Declarations

It is good pragmatics to name a module. This name can be used to index the local variables so that
they need not be renamed during composition. Also, the properties of the module can be indexed
on the name for quick look-up. Parametric modules allow the use of logical (state-independent)
and type parameterization in the definition of modules. A parametric module is defined as

Draft
 109

20 The Module Language

ModuleDeclaration := Identifier[[VarDecls]] : MODULE = Module

Parametric modules allow modules to be defined with some open parameters that can be instanti-
ated when the module is used.

Draft
 110

Chapter 6

SAL Contexts

The language so far can describe transition system modules but has no way of declaring new types
or constants or asserting properties of these modules. The SAL context language provides the
framework for declaring types, constants, modules, and module properties. Below we present the
syntax for contexts containing declarations for constants, types, modules, assertions, and other
(imported) contexts. SAL contexts are read from left to right, top to bottom, and an entity must
be declared before it is referenced.1

There is no name overloading in SAL. An unqualified name always refers to the local context.
Qualified names must provide both the context and the parameters. Because of this, explicit
importings are not needed.2

Context := Identifier [{Parameters}] : CONTEXT = ContextBody
Parameters := [TypeDecls] ; {VarDecls}∗,
TypeDecls := {Identifier}+

, : TYPE
ContextBody := BEGIN Declarations END
Declarations := {Declaration ;}+

Declaration := ConstantDeclaration
| TypeDeclaration
| AssertionDeclaration
| ContextDeclaration
| ModuleDeclaration

ConstantDeclaration := Identifier [(VarDecls)] : Type [= Expression]
TypeDeclaration := Identifier : TYPE [= TypeDef]

AssertionDeclaration := Identifier : AssertionForm = AssertionExpression
AssertionForm := OBLIGATION | CLAIM | LEMMA | THEOREM

ContextDeclaration := Identifier : CONTEXT = Identifier{ActualParameters}
ActualParameters := {Type}∗, ; {Expression}∗,

1For those readers familiar with PVS, a SAL context is very similar to a PVS theory, but with different sets of
allowable declarations.

2We are considering adding IMPORTINGs for convenience in the concrete language, but the parser should always
be able to generate fully qualified names in the abstract syntax. See Section 8.2.1

21
 111

22 SAL Contexts

6.1 Context Parameters

Context parameters allow for generic contexts that may be used from other contexts with different
instances. Thus a context may be parameterized by a positive integer N that gives the number of
processes, and a modelchecker may instantiate this to 6, in order to make it finite.

Within the given context, parameter types are treated as uninterpreted types, and parameter
variables are treated as uninterpreted constants. Note that distinct type parameters are treated as
distinct types, although they may be instantiated to the same type.

6.2 Constant Declarations

The simplest constant declaration provides an uninterpreted constant, e.g.,

c: INTEGER

Note that because all types must be nonempty, no proof obligation will be generated for the
constant, though there may be one generated for the type.

Constant declarations may also provide a definition:

n: INTEGER = 3
f: [INTEGER -> [INTEGER -> INTEGER]] =

LAMBDA (x: INTEGER): LAMBDA (y: INTEGER): x + n * y

A defining form may be used, which is usually more readable:

f(x: INTEGER): [INTEGER -> INTEGER]] =
LAMBDA (y: INTEGER): x + n * y

Although higher-order functions are supported, only the top-level LAMBDA may be turned into a
defining form. This is not much of an inconvenience, since higher-order functions are not often
needed in transition system specifications.

Constant declarations may also be recursive. This is implicit, and the system must be able to
determine the measure in order to generate the proper termination obligation:3

fact(n: NATURAL): NATURAL =
IF n = 0 THEN 1 ELSE n * fact(n - 1)

6.3 Context Declarations

A ContextDeclaration provides an abbreviation, e.g., instead of writing

lem: LEMMA mycontext{int; 13}!f(3) = mycontext{int; 13}!f(4)
3As discussed in Section 8.5, this will probably change in the future.

Draft
 112

6.4 Assertion Declarations 23

One would write

mc: CONTEXT = mycontext{int; 13}
lem: mc!f(3) = mc!f(4)

6.4 Assertion Declarations

Assertion expressions allow properties to be stated. In the simplest case these are just boolean-
valued expressions, which are thus just logical formulas. The ModuleModels form allows properties
of modules to be stated. Note that the syntax says nothing about the possible temporal operators;
this is defined in a separate context. A ModuleImplements assertion MC IMPLEMENTS MA, says
that any possible behavior of MC is also a behavior of MA. This allow refinement and abstraction
relations to be specified.

AssertionExpression := ModuleAssertion |PropositionalAssertion |QuantifiedAssertion |Expression
ModuleAssertion := ModuleModels |ModuleImplements

ModuleModels := Module |- Expression
ModuleImplements := Module IMPLEMENTS Module

PropositionalAssertion := PropOp (AssertionExpression , AssertionExpression)
| NOT (AssertionExpression)

QuantifiedAssertion := Quantifier (VarDecls) : AssertionExpression
PropOp := AND | OR | => | <=>

Draft
 113

24
 114

Chapter 7

Another SAL Example: Mutual
Exclusion

We show another example SAL specification: a variant of Peterson’s mutual exclusion algorithm [6].
Here the state of the process module consists of the controlled variables corresponding to its own
program counter pc1 and boolean variable x1, and the observed variables are the corresponding pc2
and x2 of the other process. Initially process is sleeping. The process module is parameterized
with a boolean tval argument.

The system is then the asynchronous composition of two processes, where the variables of the
process[TRUE] have been renamed in order to make them compatible with process[FALSE], i.e.,
the outputs of one are wired to the inputs of the other.

The main property of this algorithm is assertion mutex, which asserts the safety property that in
system, it is always true that the two processes are not both in their critical sections. The
assertion language used here is LTL. G represents the henceforth modality and F represents eventu-
ally. Other properties are given, for example livenessbug1 states the liveness property that it is
always possible for process[FALSE] to reach its critical section. This property is false, because
there is no fairness built-in to SAL, so process[TRUE] can simply run forever. The same is true
for livenessbug2. The other liveness properties bring in fairness constraints explicitly, and are
provable.

peterson: CONTEXT =
BEGIN

PC: TYPE = {sleeping, trying, critical};

process [tval : BOOLEAN]: MODULE =
BEGIN

INPUT pc2 : PC
INPUT x2 : BOOLEAN
OUTPUT pc1 : PC
OUTPUT x1 : BOOLEAN
INITIALIZATION pc1 = sleeping
TRANSITION

[

25
 115

26 Another SAL Example: Mutual Exclusion

wakening:
pc1 = sleeping --> pc1’ = trying; x1’ = x2 = tval

[]
entering_critical:

pc1 = trying AND (pc2 = sleeping OR x1 = (x2 /= tval))
--> pc1’ = critical

[]
leaving_critical:

pc1 = critical --> pc1’ = sleeping; x1’ = x2 = tval
]

END;

system: MODULE =
process[FALSE]
[]
RENAME pc2 TO pc1, pc1 TO pc2,

x2 TO x1, x1 TO x2
IN process[TRUE];

mutex: THEOREM system |- G(NOT(pc1 = critical AND pc2 = critical));

invalid: THEOREM system |- G(NOT(pc1 = trying AND pc2 = critical));

livenessbug1: THEOREM system |- G(F(pc1 = critical));

livenessbug2: THEOREM system |- G(F(pc2 = critical));

liveness1: THEOREM system |- G(pc2 = trying => F(pc2 = critical));

liveness2: THEOREM system |- G(pc1 = trying => F(pc1 = critical));

liveness3: THEOREM system |- G(F(pc1 = trying)) => G(F(pc1 = critical));

liveness4: THEOREM system |- G(F(pc2 = trying)) => G(F(pc2 = critical));

END

Note: the assertions in the THEOREMS are not technically type correct, because the LTL operators
G and F are not defined locally. They are built-in to the SALENV tools descibed in http://
sal.csl.sri.com/salenv.html. To make this valid would require defining a LTL context, then
including the context name (along with the parameters) in the references to G and F. In addition,
G and F technically operate on path formulas, so giving them a type that allows them to operate
on boolean formulas is a problem. Sections 8.2.1 and 8.3 address these issues.

Draft
 116

http://sal.csl.sri.com/salenv.html
http://sal.csl.sri.com/salenv.html

Chapter 8

Future Work

This language manual and SAL itself are a work in progress.

8.1 SAL as an Intermediate Language

SAL was originally intended to be an intermediate language, but as work progressed it became clear
that many users were going to use the language directly, not as an internal representation for some
front end. In addition, the desire to create a SAL tool bus, and to keep it language independent,
led to the decision to create an abstract syntax in XML, and treat that as the intermediate form.
XML was chosen because it is widely used, extensible, and most popular programming languages
have direct support for reading and representing XML datas structures.

We have thus defined an abstract syntax in XML by a document type description (DTD), available
at http://sal.csl.sri.com/documentation.html. The SAL parser (http://sal.csl.sri.com/
salparser.html) simply reads the concrete syntax and generates an XML file that satisfies the
SAL DTD. The separation of the abstract and concrete syntax has many benefits, in that the
concrete language may be extended in various ways for convenience, yet map to a more restricted
set of data structures, which means that tools do not need to be modified everytime something is
added to the concrete language. In addition, users may create their own concrete languages, as
long as there is a mapping to the SAL XML abstract syntax.

A general rule followed by the SAL parser is that any transformations done by the parser in creating
the abstract structures must, in principle, be invertible. In other words, it should be possible to
prettyprint the abstract syntax and get back the original form, ignoring whitespace.

8.2 A SAL Prelude

The language described here has many built-ins, such as INTEGER, AND, +, etc. In principle, these
could be defined in a separate context, and imported. This would make the language cumbersome,
so instead they were built-in. In our opinion a better choice would be to define these in a prelude,
that is automatically imported and provides types, constants, and lemmas. For example, various
logics such as CTL, CTL*, and LTL can be defined in the prelude, and even given semantics.

27
 117

http://sal.csl.sri.com/documentation.html
http://sal.csl.sri.com/salparser.html
http://sal.csl.sri.com/salparser.html

28 Future Work

The main advantage of a prelude is that it separates the core language from entities built on the
core language. This means that changes to the language can be kept to a minimum, while still
allowing new types and constants to be treated as if they were built-in. This is simlar to the
separation of the core language of C from its numerous libraries.

Any given SAL tool should be able to read the prelude, and build a symbol table, so it should not
be difficult to support.

8.2.1 Libraries, Importings, and Logics

The language defined here may only refer to names outside the context using the fully qualified
name. This is helped somewhat with ContextDeclarations, but if a large hierarchy is built up, even
this will lead to specifications that are difficult to write and to read. In moving away from the view
that this is solely an intermediate language, we feel that the addition of libraries, importings, and
logics would be useful, at least in the concrete language.

A library is really just an extension of the idea of a prelude, and allows sets of contexts to be
defined in a separate directory, and packaged for broad use and distribution, as with PVS libraries.

Importing a context instance allows the names from that context to be used without a qualifier.
There would be restrictions: name conflicts will not be allowed, even if the entities are not com-
parable. If a referenced name has an associated declaration both in the current context and an
imported one, the local one always is used. If a referenced name is common to two separate contexts
(including different instances of the same context), then it is an error, and the name must be fully
qualified.

Importing a logic is similar, but the idea here is that a logic may be parameterized with the
transition system defined by a module, and many instances may be needed for multiple module
expressions. A logic declaration would be similar to an importing, but the information needed to
instantiate it is derived from the module assertions, for example, a CTL context could be defined,

ctl{state: TYPE;
init: [state -> BOOLEAN],
trans: [[state, state] -> BOOLEAN]} : CONTEXT =

...

this can then be used as follows:

LOGIC ctl
asafety: LEMMA async_bak |- AG(NOT (pc1 = l3 AND pc2 = l3));

rather than the error prone and unreadable expanded form:

asafety: LEMMA
async_bak |- ctl{async_bak.STATE;async_bak.INIT,async_bak.TRANS}!

AG(NOT (pc1 = l3 AND pc2 = l3));

This would address the problem with the peterson specification described in Chapter 7.

Draft
 118

8.3 Conversions 29

Note that in principle a parser for the concrete language can parse the imported contexts, produce
name conflict errors, and generate XML files that do not have any importings. This kind of
tranformation means that the abstract syntax can be kept minimal, while allowing the concrete
syntax to be much more convenient and readable.

8.3 Conversions

The preceding section described a CTL formula. In CTL, AG is a predicate transformer, of type
[[STATE -> BOOLEAN] -> [STATE -> BOOLEAN]]. But of course NOT and AND are BOOLEAN oper-
ators, so there is a mismatch. PVS provides a mechanism, called lambda conversion, that is very
effective in lifting such operators, in this case the result would be as follows:

AG(LAMBDA (s: STATE): NOT (pc1(s) = l3 AND pc2(s) = l3))

Of course, if SAL was only intended for CTL, this could simply be built-in, but SAL is intended to
be logic-independent. For LTL, the formulas are path formulas, not state formulas. In fact, LTL
often treats state formulas as path formulas. So a more comprehensive treatment is needed, and
conversions look like a reasonable approach.

8.4 Empty Types

As discussed in the adder example in Chapter 2, the restriction to nonempty types can actually get
in the way of succinct specifications. In the adder case, there is no real problem with having the
empty type, it simply means that the onebitadder is composed with a module that always skips.
Thus in a MultiSynchronous composition if the index type is empty, the result is a module with no
state variables that always skips. If it is a MultiAsynchronous composition, the result is an empty
module with no transitions (i.e., it is deadlocked). PVS allows empty types, and there is no logical
difficulty. One must, of course, be careful with applying logical rules, in particular those involving
quantifiers. For example, one can usually ignore quantifiers whose bound variables do not occur
in the underlying expression, but if empty types are allowed, this is unsound. Thus FORALL (x:
T): FALSE could naively be reduced to FALSE, but if the type T is empty it is actually vacuously
TRUE. Also allowing a type to be nonempty means that the declaration of a constant may entail a
nonemptiness obligation on the type.

8.5 Recursive Function Termination

In PVS, recursive functions must include a measure, and optionally a well-founded ordering. In
earlier discussions of SAL it was thought that functions would be simple enough that the typechecker
would always be able to figure out the measure, but this is clearly not true; even the usual definition
for GCD requires a measure on the difference of the arguments, and it is not at all clear how a
typechecker would be able to determine this. In the future we plan to allow a measure and ordering
to be optionall provided by the user.

Draft
 119

30 Future Work

8.6 State-Dependent Types

Types in SAL are static, but there are situations where having a type that depends on the state
is more expressive. In effect, it means that the type can change as the system progresses. The
typechecker would generate proof obligations that in every reachable state all state variables satisfy
their types. State-dependent types might be useful, for example, in modeling adjustable arrays,
where an array may change size dynamically, but it is preferable to prove that a runtime arrays-
bound check is not necessary.

Draft
 120

Bibliography

[1] R. Alur, T. A. Henzinger, F. Y. C. Mang, S. Qadeer an d S. K. Rajamani, and S. Tasiran.
MOCHA: Modularity in model checking. In Alan J. Hu and Moshe Y. Vardi, editors, 98,
volume 1427, pages 521–525. Vancouver, Canada, June 1998. 2

[2] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991. 2

[3] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA,
1993. 2

[4] Ralph Melton and David L. Dill. Murφ Annotated Reference Manual. Computer Science De-
partment, Stanford University, Stanford, CA, March 1993. 2

[5] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Language Reference,
September 1999. 6

[6] G. L. Peterson. Myths about the mutual exclusion problem. Information Processing Letters,
12(3):115–116, June 1981. 25

31
 121

32
 122

Index

*, 9
+, 9
-, 9
/, 9
/=, 9
<, 9
<=, 9
<=>, 9
=, 9
=>, 9
>, 9
>=, 9
%, 5

Access, 12, 16
Accessors, 6
ActualParameters, 21
adder example, 3
addition, 9
AND, 9
Application, 9
Argument, 9
arithmetic operators, 9
ArrayAccess, 12, 16
ArrayLiteral, 9
ArraySelection, 9
ArrayType, 6
assertion declaration, 23
AssertionDeclaration, 21
AssertionExpression, 23
AssertionForm, 21
assignment, 13
Assignments, 13, 16
asynchronous composition, 18–19
AsynchronousComposition, 17

base module, 17–18
BaseDeclaration, 16
BaseDeclarations, 16
BaseModule, 15, 16
BasicType, 6
Bound, 6

causal cycles, 12

causality check, 14
causality checks, 13
CExpression, 10
comments, 5
composition

asynchronous, 18–19
module, 18–19
synchronous, 18–19

compositional analysis, 19
concstructor, 7
Conditional, 9
conjunction, 9
ConstantDeclaration, 21
Constructors, 6
Context, 21
context, 21–23
context declaration, 22
context parameters, 22
ContextBody, 21
ContextDeclaration, 21, 28
controlled variable, 11
conversions, 29
current expression, 10

DataType, 6
deadlock, 14
Declaration, 21
Declarations, 21
DefDecl, 16
Definition, 12, 16
DEFINITION section, 17
DefinitionOrCommand, 16
Definitions, 12, 16
definitions, 11–13
dependency analysis, 13, 19
Digit, 5
disequality, 9
disjunction, 9
DIV, 9
division, 9

ELSE, 14
ElseCommand, 16
ElsIf, 9

33
 123

34 INDEX

equality, 9
equivalence, 9
exclusive-or, 9
Expression, 8
expressions, 8–10

ForallDefinition, 12, 16
Function, 9
FunctionType, 6

generic context, 22
global variable, 11
GlobalDecl, 16
governing conditions (GC), 13
Guard, 13, 16
guard, 13
guarded commands, 13–14
GuardedCommand, 13, 16

Hiding, 17
higher-order functions, 22

Identifier, 5, 10
implication, 9
importing, 28
IndexType, 6
IndexVarDecl, 9
InfixApplication, 9
InitDecl, 16
initialization condition, 11
INITIALIZATION section, 17
input variable, 11
InputDecl, 16
intermediate language, 27
invariant definition, 11
invariant obligation, 12

LambdaAbstraction, 9
LetDeclarations, 9
LetExpression, 9, 10
Letter, 5
Lhs, 12, 16
libraries, 28
library, 28
LOCAL construct, 18
local variable, 11
LocalDecl, 16
logic, 28
logical variable, 10
logics, 28

minus, 9
Mocha, 2
MOD, 9
model, 10

Module, 16
module, 15–20
module, 11
module composition, 18–19
module declaration, 19
module name, 19
ModuleAssertion, 23
ModuleDeclaration, 20
ModuleImplements, 23
ModuleInstance, 17
ModuleModels, 23
ModuleName, 17
MultiAsynchronous, 17
MultiCommand, 16
multiplication, 9
MultiSynchronous, 17
Murphi, 2

Name, 6
name

overloaded, 21
qualified, 21
unqualified, 21

name equivalence, 6
NamedCommand, 16
NameExpr, 9
negation, 9
NewOutput, 17
NewVarDecls, 17
next state variable, 11
NextVariable, 9, 10
NOT, 9
Numeral, 5

obligation
invariant, 12

observed variable, 11
ObserveModule, 17
Opchar, 5
operator associativity, 10
operator precedence, 10
OR, 9
OUTPUT construct, 18
output variable, 11
OutputDecl, 16
overloaded name, 21

Parameters, 21
parametric module, 19
precedence, 10
prelude, 27
proof obligation, 9, 13, 14, 19, 22
proof obligations, 10
PropOp, 23

Draft
 124

INDEX 35

PropositionalAssertion, 23
PVS, 6

qualified name, 21
QualifiedModuleName, 17
QualifiedName, 6
QualifiedNameExpr, 9
QuantifiedAssertion, 23
QuantifiedExpression, 9
Quantifier, 9

recognizer, 7
RecordAccess, 12, 16
RecordEntry, 9
RecordLiteral, 9
RecordSelection, 9
RecordType, 6
recursive datatype, 7
recursive function, 29
recursive functions, 22
RENAME construct, 18
Renames, 17
Renaming, 17
reserved words, 5
RhsDefinition, 12, 16
RhsExpression, 12, 16
RhsSelection, 12, 16

ScalarType, 6
ScalarTypeName, 6
semantics, 10
SetExpression, 9
SetListExpression, 9
SetPredExpression, 9
SimpleDefinition, 12, 16
SMV, 2
SomeCommand, 16
SomeCommands, 16
special symbols, 5
SpecialSymbol, 5
SPIN, 2
state variable, 10
state-dependent type, 30
StatePred, 9, 10
StateType, 6
Subrange, 6
subtraction, 9
SubType, 6
Symbolic Analysis Laboratory (SAL), 1
synchronous composition, 18–19
SynchronousComposition, 17

TCC, 10
ThenRest, 9
TransDecl, 16

transition relation, 11
TRANSITION section, 17–18
TupleAccess, 12, 16
TupleLiteral, 9
TupleSelection, 9
TupleType, 6
Type, 6
type

array, 6
basic, 6
built-in, 6
dependent, 6
empty, 3, 29
equivalence, 6
function, 6
nonempty, 3, 7, 29
record, 6
subrange, 6
subtype, 6
tuple, 6
uninterpreted, 6

type correctness condition (TCC), 10
TypeDeclaration, 21
TypeDecls, 21
TypeDef, 6
types, 6–8

Unbounded, 6
unqualified name, 21
Update, 9
UpdateExpression, 9
UpdatePosition, 9

VarDecl, 9
VarDecls, 9
variable

controlled, 11
global, 11
input, 11
local, 11
logical, 10
next state, 11
observed, 11
output, 11
state, 10

VarType, 6

WITH construct, 18
WithModule, 17

XOR, 9

Draft
 125

A Tehnique for Invariant Generation?To be presented at Tools and Algorithms for the Constrution andAnalysis of Systems, TACAS 2001, Genova, Italy, April 2001.This is LNCS.A. Tiwari, H. Rue�, H. Sa��di, and N. ShankarSRI International,333 Ravenswood Ave,Menlo Park, CA, U.S.Aftiwari,ruess,saidi,shankarg�sl.sri.omAbstrat. Most of the properties established during veri�ation are ei-ther invariants or depend ruially on invariants. The e�etiveness of au-tomated formal veri�ation is therefore sensitive to the ease with whihinvariants, even trivial ones, an be automatially dedued. While thestrongest invariant an be de�ned as the least �xed point of the strongestpost-ondition of a transition system starting with the set of initial states,this symboli omputation rarely onverges. We present a method forinvariant generation and strengthening that relies on the simultaneousonstrution of least and greatest �xed points, restrited widening andnarrowing, and quanti�er elimination. The e�etiveness of the method isdemonstrated on a number of examples.1 IntrodutionThe majority of properties established during the veri�ation of programs areeither invariants or depend ruially on invariants. Indeed, safety properties anbe redued to invariant properties, and to prove progress one usually needs toestablish auxiliary invariane properties too. Consequently, the disovery andstrengthening of invariants is a entral tehnique in the analysis and veri�ationof both sequential programs and reative systems, espeially for in�nite statesystems.Consider, for example, a program with state variables p and x. The programounter p is interpreted over the ontrol loations in and de, and x is inter-preted over the integers. Initially, the program ounter p is set to in and x to0. The dynamis of the system is desribed in terms of the guarded ommands:p = in 7�! x := x+ 2; p := dep = de ^ x > 0 7�! x := x� 2; p2fin; degSuppose we are interested in establishing the invariant p = in ! x = 0. Ana��ve proof attempt fails, and onsequently, the invariant needs to be strength-ened to an indutive invariant (p = in ! x = 0) ^ (p = de ! x = 2). Suh? The researh desribed in this paper was supported in part by NSF ontrat CCR-9712383 and DARPA/AFRL ontrat F33615-00-C-3043.
 126

strengthenings are typially needed in indution proofs. In general, the mainpriniple for proving that a prediate � is an invariant of some program or sys-tem S, onsists in �nding an auxiliary prediate suh that is stronger than� and is indutive; i.e., every initial state of S satis�es , and is preservedunder all transitions. This rule is sound and (relatively) omplete. On the otherhand, �nding a strengthening is not always obvious, and usually requires amirosopi examination of failed veri�ation attempts.Most approahes for generating and strengthening invariants are based onsymboli omputation of the system at hand [4, 10, 15℄. The bottom-up methodperforms an abstrat forward propagation to ompute the set of all reahableon�gurations, while the top-down method starts from an invariant andidate� and performs an abstrat bakward propagation to ompute a strengthenedinvariant . There is, however, no guarantee for suess in exat forward orbakward propagation. This may be due either to in�nite or unmanageably largeon�guration spaes or to the failure to detet onvergene of the propagationmethods altogether. Consequently, approximation tehniques suh as wideningor narrowing [8℄ are needed to enfore termination of symboli omputation. Thebasi idea is to aelerate the onvergene of symboli omputations in in�niteabstrat domains.The framework of abstrat interpretation with widening and narrowing asoutlined in [8℄, however, is not immediately appliable to the disovery andstrengthening of indutive invariants, sine not every over-approximation of anindutive invariant is neessarily an indutive invariant. Our main ontribu-tions are: �rst, we provide an abstrat desription of the proess of indutiveinvariant generation and strengthening based on omputing under- and over-approximations of the reahable state set; seond, this framework is instantiatedwith a novel tehnique based on ombining onrete widening and narrowingoperators. Our tehniques an uniformly be used on a wide lass of examples in-luding transition systems where both forward and bakward propagation do notonverge. We demonstrate the e�etiveness of our approah through a variety ofexamples.Our algorithm is based on the symboli omputation of a sequene of under-and over-approximations of the reahable state set. These omputations relyheavily on the elimination of quanti�ers in the underlying theory. Quanti�erelimination, however, is not required to return equivalent formulas, sine our al-gorithm tolerates weakened quanti�er-eliminated formulas. Whenever the om-putation of the sequene of under-approximations terminates, we get an in-dutive invariant. Moreover, sine every element in the sequene of dereasingover-approximations is an indutive invariant, our algorithm an be stoppedat any time and it outputs the best (strongest) indutive invariant omputedup to this point. In the example above, our proedure yields the invariant(p = in ! x = 0) ^ (p = de ! x = 2).11 This example an also be handled by some other invariant generation tehniquesbased on forward reahability or abstration [3, 17℄.
 127

The approah faes two problems. First, the omputation of the sequene ofunder-approximations usually does not terminate. Seond, the omputation ofthe sequene of over-approximations terminates with very weak invariants, inpratie. For instane, forward reahability does not onverge in ase the initialvalue for x is unspei�ed in the example above. In order to overome these prob-lems we add speialized widening and narrowing operators to our algorithm. Oneof the distinguishing features of our algorithm is the use of unreahable on�gu-rations for deteting unreahable strongly onneted omponents and omputingorresponding narrowing operators. In this way, our algorithm terminates withthe invariant x > �2 in ase the initial value for x is unspei�ed in our runningexample.The paper is strutured as follows. In Setion 2 we introdue notation andde�nitions, Setion 3 presents the theoretial framework that is used in Setion 4to obtain a proedure for generating invariants using aÆrmation and propagationrules along with widening and narrowing. Finally, we onlude in Setion 5 with ashort investigation of the relationship between invariant generation and abstratinterpretation, and omparisons with related work.2 PreliminariesLet � be a �rst-order language ontaining interpreted symbols for standardonrete domains like booleans, integers and reals. Let < denote the (�rst-order)theory of interest over the language �. We �x the set V = fx1; : : : ; xng of(typed) variables and denote by F the set of �rst-order formulas over � withfree variables ontained in the set V . A transition system S is a tuple (V ; �; �),where � 2 F and � is a �rst-order formula over � with free variables ontainedin the set V [V 0, where V 0 = fx01; : : : ; x0ng. The formula � is alled the initialprediate and the formula � a transition prediate of the system S. We shalldenote the sequene x1; : : : ; xn by x and the sequene x01; : : : ; x0n by x0.A state � of a transition system S = (V ; �; �) is a mapping from V to valuesfrom the orresponding domains. If � is a state, we denote by �0 the mappingobtained by renaming variables xi to x0i in �. A formula �(x) is interpreted as theset j[�(x)℄j of all states � suh that <; � j= �(x). We de�ne the set Reah(�)(�)of states reahable from the states represented by � via the transition prediate� as the smallest set suh that (i) j[�℄j � Reah(�)(�) and (ii) the state � 2Reah(�)(�) whenever <; �; �0 j= �(x;x0) for some � 2 Reah(�)(�). Sinethe theory < is �xed, we shall not mention it expliitly when we talk aboutsatis�ability and validity in <. Thus, validity in < is denoted by j=.A formula transformer � is a funtion mapping formulas to formulas. Thestrongest postondition transformer, denoted by SP(�), is de�ned as SP(�)(�(x)) =9y:(�(y;x)^�(y)). The formula SP(�)(�(x)) denotes the set of states reahablein one step from the set of states represented by �. Similarly, the weakest pre-ondition transformer, WP(�), is de�ned as WP(�)(�(x)) = 8y:(�(x;y)! �(y)).A �xed point of a formula transformer � is a formula � suh that j= � (�)$ �.A formula transformer � is monotoni if j= � (�)! � () whenever j= �! . A
 128

least �xed point of � , denoted by � :� (), is a �xed point � suh that for anyother �xed point of � , it is the ase that j= (�!). A greatest �xed point of � ,denoted by � :� (), is a �xed point � suh that for any other �xed point of � ,it is the ase that j= (! �). Whenever the transition system hV ; �; �i is learfrom the ontext, we de�ne the transformer I by I(�) = SP(�)(�)_�. Note thatthe transformer I is monotoni. The least �xed point of this operator, � :I(),whenever it exists in the �rst-order language, represents the set Reah(�)(�) ofreahable states.2.1 InvariantsA formula � is an S-invariant if Reah(�)(�) � j[�℄j. Thus, an invariant desribesan over-approximation of the set of reahable states. An S-indutive invariantis a formula � suh that (i) � is an S-invariant, and (ii) � is indutive, i.e.,j= SP(�)(�) ! �. Condition (ii) an be equivalently stated as j= � ! WP(�)(�).In other words, � is an S-indutive invariant if j= I(�) ! �. Note that thede�nition does not require an equivalene, but only an impliation.It is easy to establish that the set of reahable states Reah(�)(�) of a systemS represents the strongest (indutive) invariant. By this we mean that if isany other (indutive) invariant, then, Reah(S)(�) � j[℄j. However, note that if� is an indutive invariant, and j= (� !), then need not be an indutiveinvariant beause might violate ondition (ii). For purposes of this paper, wewill only be interested in indutive invariants. Thus, we are not interested in justobtaining any over-approximation of the set of reahable states, but only thosethat also satisfy ondition (ii). This is beause the indutive property providesa suÆient loal haraterization of invariane property, whih makes the taskof proving easier.Given a transition system S = (V ; �; �), the onverse transition systemS�1 = (V ; �; ��1) is de�ned by ��1(x;y) = �(y;x). The following well-knowntheorem says that if none of the initial states is bakward reahable from thestates represented by �, then :� is an invariant.Theorem 1. Let S = hV ; �; �i be a transition system and � an arbitrary for-mula. If is suh that j= (SP(��1)() _ �) ! and the formula � ^ isunsatis�able, then : is an S-indutive invariant.Corollary 1. If Reah(��1)(�) \ j[�℄j = ;, then the formula orresponding tothe omplement of the set Reah(��1)(�) is an S-indutive invariant.We remark here that although appliation of the SP(�) transformer is alled\forward propagation", the term \bakward propagation" is typially used forthe transformer WP(�). But there is no anomaly here as the transformers SP(��1)and WP(�) are duals in the sense that SP(��1)(�) is logially equivalent to:WP(�)(:�). Hene, Theorem 1 an be stated in terms of WP(�). It also followsthat if formula � is an invariant, then the formula � :� ^ WP(�)() is an indu-
 129

tive invariant that is a strengthening of �2. Similarly, it is easy to see that thereis a orresponding onnetion between the SP(�) and WP(��1) transformers.3 Indutive Invariant GenerationIn this setion, we disuss the problem of automatially generating some usefulindutive invariants for a given transition system. It is a simple observation thatthe greatest �xed point ��:I(�), whenever it exists, is an S-indutive invariant.Lemma 1. Let S = hV ; �; �i be a transition system. Reursively de�ne thesequene of formulas �0; �1; : : :, as follows.�0 = true �i+1 = SP(�)(�i) _ �Then, every formula �i is an S-indutive invariant. Furthermore, every formula�i in the above sequene an be deomposed as i _ �i, where 0 = false i+1 = SP(�)(i) _��0 = true �i+1 = SP(�)(�i):The sequene 0; 1; : : : ; represents iterations in a least �xed point omputa-tion of the I transformer. The sequene �0; �1; : : : ; represents the greatest �xedpoint omponent. The formulas i provide suessive under-approximations ofthe set Reah(�)(�) of reahable states. The formulas �i are indutive over-approximations. The sequene 0; 1; : : : ; usually does not terminate, whereasthe sequene �0; �1; : : : ; often terminates with very weak invariants.It should be observed here that the greatest �xed point of the SP(�)() _ �transformer haraterizes states � suh that there exists a bakward path startingfrom � whih is either in�nite, or ontains some initial state. In ase of �nitestate transition systems, this is exatly the set of states that either belong toa strongly onneted omponent, or, that are reahable from either some initialstate or some strongly onneted omponent. Hene, the greatest �xed pointmay not be the strongest S-indutive invariant even in the ase of �nite systems.Despite its shortomings, this simple method is attrative sine (i) we do notneed to detet that the iterations have onverged3, and (ii) every formula �i isan S-indutive invariant. Deteting onvergene is diÆult as it involves deidingif j= �i $ �i+1.Example 1. Consider the transition system over ten states presented in Figure 1.2 It follows from this duality that the the least (greatest) �xed point iterations ofSP(��1) _ � are logially equivalent to the negations of the greatest (least) �xedpoint iterations of WP(�) ^ :�.3 If � is an S-invariant, then every iteration in the greatest �xed point omputationof WP(�)()^ � is also an S-invariant. But, if � is indutive, then this method yields�.
 130

>> 1

2 3

4

5 6

7

8 9

10

States are represented by nodes with inte-ger labels and transitions are representedby edges. State 1 is the initial state.Clearly, the set of reahable states is theset f1; 2; 3; 4g:The greatest �xed point of the SP(�) _ �is the set onsisting of statesf1; 2; 3; 4; 5; 6; 7; 8; 9g:Fig. 1. A �nite state transition system.3.1 Widening and NarrowingIn the ase when the state spae is either in�nite, or �nite but too large, thesymboli omputation of (greatest or least) �xed points of various transformers isrestrited by the �nite spae and time resoures available. A well-known solutionto this problem is the use of widening and narrowing to respetively enhane theleast and greatest �xed point omputation (with gains obtained both in termsof spae and time).A widening operator 5 : F �F 7! F is a funtion suh that for all formulas�; �0 2 F , j= (�_�0)! 5(�; �0). Similarly, a narrowing operator4 : F�F 7! Fis a funtion suh that for all formulas �; �0 2 F , j= 4(�; �0) ! (� ^ �0). Thus,logial disjuntion _ is a trivial widening operator, and logial onjuntion ^ isa trivial narrowing operator.The de�nitions of widening and narrowing are slightly di�erent from thestandard ones [8, 9℄. First, we do not inlude any onditions to guarantee thatinreasing (dereasing) sequenes are transformed to �nite, hene onverging,inreasing (dereasing) sequenes by widening (narrowing). Seondly, in the aseof narrowing, the standard de�nition requires that whenever �0 ! �, the formula4(�; �0) is suh that �0 ! 4(�; �0) and4(�; �0)! �. In our de�nition, 4(�; �0)is stronger than both � and �0 as our interest is in the use of narrowing to obtainunder-approximations of the greatest �xed point. But we have to be areful so asto not eliminate any reahable states by overly aggressive under-approximation,see Lemma 3.A partiularly simple narrowing operator, denoted by 4(), is de�ned by4()(�; �0) = � ^ �0 ^ , where is an arbitrary formula. Similarly, we ande�ne 5()(�; �0) = � _ �0 _ . Sine we are interested in generating indutiveinvariants, it turns out that in order to guarantee orretness, we an use anyarbitrary widening operator, but not any narrowing operator.Lemma 2. [Upward iteration sequene with widening℄ Let 0; 1; : : : ; be a se-quene of formulas suh that 0 is �, and for every i > 0, either(i) i is SP(�)(i�1) _ i�1, or(ii) i is 5(�i)(i�2; i�1), where �i is any arbitrary formula.
 131

Then, if for some n > 0, j= SP(�)(n) ! n, then the formula n is an S-indutive invariant.Lemma 3. [Downward iteration sequene with narrowing℄ Let �0; �1; : : : ; be asequene of formulas suh that �0 is true, and for every i > 0, either(i) �i is SP(�)(�i�1) _ �, or(ii) �i is 4(�i)(�i�2; �i�1), where �i is some S-indutive invariant.Then, for every i, �i is an S-indutive invariant4 suh that j= �i ! �i.Lemma 3 extends the greatest �xed point iterations in Lemma 1 by a nar-rowing operator. Similarly, Lemma 2 extends the least �xed point omputationthat is hidden inside the iterations in Lemma 1 by a widening operator.We obtain the formula �i used in Lemma 3 by identifying strongly onnetedomponents onsisting of unreahable states. This is ahieved using bakwardpropagation from an unreahable state, as outlined in Theorem 1. These un-reahable states are not automatially eliminated by the greatest �xed pointomputation outlined in Lemma 1. Furthermore, an S-indutive invariant ob-tained using Lemma 2 an be used in Step (ii) of Lemma 3. Thus, Lemma 3gives a method for systematially strengthening known invariants.Example 2. Following up on Example 1, let N = f1; 2; : : : ; 10g denote the setof all states. In order to strengthen the over-approximation, viz. N � f10g, ofthe set of reahable states obtained via the greatest �xed point omputation, wean try removing ertain states. But if we remove a subset of states that is notstrongly onneted, the subsequent �xed point omputation may no longer bemonotoni, and ould fail to onverge.For instane, removing state 5 from the above set gives a new set N1 =N � f5; 10g. Now, SP(�)(�N1) _ �, where �N1 is the harateristi prediateof N1, represents the set N2 = N � f6; 10g. Clearly, N2 6� N1, and hene thesequene of formulas obtained in the greatest �xed point omputation is nolonger monotoni. Note that all formulas in the sequene are invariants, butthey are not indutive.In order to identify unreahable states, we note that if we start with theset N3 = f7; 8g, and we assign � in Theorem 1 to the harateristi prediate�N3 of N3. The least �xed point of SP(��1) _ �N3 represents the set N4 =f5; 6; 7; 8; 9; 10g. Now, sine the formula � ^ �N4 is unsatis�able (i.e. the setf1g\N4 = ;), it follows from Theorem 1 that the setN5 = f1; 2; 3; 4g representedby :�N4 is an S-indutive invariant.4 An Any-time Algorithm for Generating IndutiveInvariantsThe transition prediate � of a transition system S = (V = fx1; : : : ; xng; �; �)is typially spei�ed using a �nite set of guarded transitions, where a guarded4 Note that the lemma also holds if we drop the word \indutive" from the statement.
 132

transition onsists of a guard 2 F , and a �nite set of assignments fx1 :=e1(x); : : : ; xn := en(x)g. A guarded transition � is written as 7�! x1 := e1(x); : : : ;xn := en(x)where ei is some expression with free variables in the set x. We shall also usethe ompat notation x := e(x) to represent the above assignments.A typial spei�ation of a guarded transition system ontains at least oneontrol variable, usually the program ounter p 2 fx1; : : : ; xng, whih takesvalues from a �nite set, say f1; : : : ; pg. Control states are de�ned by formulasof the form p = i, i 2 f1; : : : ; pg. This transition system then has p di�erentontrol states. Additionally, we assume that the soure states of eah guardedtransition belong to some �xed soure ontrol state, p = i, (and similarly forthe target states) so that eah transition � an be written asp = i ^ 7�! x := e(x); p := jwhere x denotes variables in V � fpg. In this ase, we de�ne sr(�) = i andtgt(�) = j. By �� (x;x0), we denote the formula (x) ^ x0 = e(x). If T isa set of suh transitions, then the transition prediate � is itself de�ned byW�2T p = sr(�) ^ p0 = tgt(�) ^ �� . Similarly, we assume that j= � ! p = 1.Whenever suh a deomposition of the state spae into �nitely many ontrolstates is available suh that every transition has a unique soure and target on-trol state, the S-invariant an be maintained as a onjuntion of loal invariantsindexed by the ontrol loations. We assume that every formula is representedas an array of formulas indexed by integers f1; : : : ; pg. Given an S-indutive in-variant ' (as an array of formulas), and a transition prediate �, the funtionpropagation(�;�; '; k) returns the strengthened S-indutive invariant Ik(').funtion propagation(�;�; '; k) flet � be p = 1 ^�0;for k iterations do: for every i in parallel do fTi := f� 2 T : tgt(�) = ig;'[i℄ := �W�2Ti SP(��)('[sr(�)℄) _�0 if i = 1W�2Ti SP(��)('[sr(�)℄) if i 6= 1� ;'[i℄ := <-simplify('[i℄);greturn(');gThe funtion <-simplify performs quanti�er-elimination and simpli�ation inthe theory < and is desribed in Setion 4.2.Lemma 4. Let S = (V ; �; �) be a transition system and let '0 be an array offormulas initialized to true. Let 'k denotes the array propagation(�;�; '0; k)of formulas (assuming <-simplify always returns equivalent formulas), and �kbe as de�ned in Lemma 1. Then, for all k � 0, j= �k $ Vpi=1(p = i ! 'k[i℄).Consequently, the formula Vpi=1(p = i! 'k[i℄) is an S-indutive invariant, forevery k.
 133

Notie that the formula Vpi=1(p = i ! '[i℄) is equivalent to the formulaWpi=1(p = i ^ '[i℄) under the assumption that Wpi=1(p = i). The omputa-tions outlined in other lemmas and theorems an be suitably ast in terms ofloal invariants at ontrol loations.4.1 Combining SP(�) and SP(��1) iterationsThe basi algorithm for the automati generation of indutive invariants on-sists of aÆrmation and propagation steps|the essene of whih is aptured inLemma 1 and funtion propagation. In order to get stronger invariants, wepropose the use of narrowing and widening.The funtion widening(#; '; k) starts with a given under-approximation #of the set of reahable states, and widens it using a subformula � of the over-approximation '. If this widening yields an S-indutive invariant (see Lemma 2)in k propagation steps, then the funtion returns this invariant, otherwise it justreturns true5.funtion widening(#; '; k) f� := #;hoose j 2 f1; : : : ; pg and a formula � s.t.'[j℄ is of the form '0 _ �, and #[j℄ ^ � is satisfiable;�[j℄ := �[j℄ _ �; /* widening */� := propagation(�;�; �; k);if (j= propagation(�;�; �; 1)[i℄! �[i℄ for all i)return(�); /* new invariant */return(true);gLemma 5. For any value of the onstant k, if � denotes the array of formulasreturned by widening(#; '; k), then the formula Vpi=1 p = i ! �[i℄ is an S-indutive invariant.Strongly onneted omponents of unreahable states are deteted usingbakward propagation, and if suessful, this information is used for strengthen-ing the urrent invariant. The subroutine narrowing(#; '; k) hooses a subfor-mula � of the over-approximation ' whih ould possibly represent unreahablestates. Thereafter, it omputes the set of states that are bakward reahable fromthe onjetured unreahable states � and if we suessfully terminate withoutinterseting � (see Theorem 1), then we again have an S-indutive invariant.funtion narrowing(#; '; k) fhoose j 2 f1; : : : ; pg and a formula � s.t.'[j℄ is of the form '0 _ �, and #[j℄ ^ � is unsatisfiable;� := propagation(p = j ^ �; ��1; false; k);5 We shall overload true (false) to also denote arrays in whih every element is true(false), and use assignments between arrays to mean element-wise opying.
 134

if (j=propagation(p = j ^ �; ��1; �; 1)[i℄! �[i℄ for all i)if (j= :(� ^ �))return(Invariant(:�));else if (� ^ � is satisfiable) /* � is reahable */return(Reahable(p = j ^ �));return(Invariant(true));gThe return value Reahable() of the funtion narrowing(#; '; k) says thatthe states represented by are reahable, and the return value Invariant()denotes that the formula represented by is an indutive invariant.Lemma 6. For any value of the onstant k, if the funtion narrowing(#; '; k)returns Reahable(), then j[℄j � Reah(�)(�). Similarly, for any value ofthe onstant k, if narrowing(#; '; k) returns Invariant(), then the formulaVpi=1(p = i! [i℄) is an S-indutive invariant.Finally, we outline a proedure that uses the various funtions desribedabove by ombining the least �xed point and greatest �xed point omputationswith narrowing and widening. In the proedure, the formula always stores anunder-approximation of the set of reahable states, and the formula � alwaysstores an S-indutive invariant. The proedure essentially onsists of doing oneof four di�erent steps|(i) Augmenting using propagation(�;�; ; k), wherek is some onstant; (ii) Strengthening the urrent invariant � using the fun-tion propagation(�;�; �; k); (iii) Use of widening on the under-approximationfor generating an invariant; and, (iv) Use of narrowing to detet and eliminateunreahable states from the over-approximation./* Given: S = (V ; �; �), a transition system with p ontrol states.The transition prediate � is indexed by guarded transitions.k is an upper bound on the number of iterations. */Proedure InvGen:�; : Array [1 : : : p℄ of formulaInitialization:� := true; := false;repeatedly do the following ff := propagation(�;�; ; k);if (j= propagation(�;�; ; 1)[i℄! [i℄ for all i)� := ; terminate the program;g OR f� := propagation(�;�; �; k);g OR f� := � ^ widening(; �; k);g OR fif (narrowing(; �; k) returns Reahable(�)) [j℄ := [j℄ _ � where � is p = j ^ �;
 135

else (assuming narrowing returns Invariant(�))�[i℄ := �[i℄ ^ �[i℄ for all i;ggTheorem 2. Let � be the array of formulas in the proedure InvGen. Then,at any stage of the proedure, the formula Vi(p = i ! �[i℄) is an S-indutiveinvariant.Our proedure does not onsider the ontrol struture of the transition graphto generate invariants. Though spei� ontrol strutures, like loops, are not rel-evant for orretness of the basi proedure, they an be important in hoosingspei� points for widening or narrowing [6℄. We wish to point out that the pro-edure is tolerant to theorem proving failures and only assumes a refutationallyomplete prover. In partiular, note that the satis�ability test in widening anbe eliminated.4.2 Quanti�er Elimination and Simpli�ationWe remark here that implementation of propagation requires elimination of ex-istential quanti�ers. The existential quanti�er in SP(��1)(�) and the universalquanti�er in WP(�)(�) an both be easily eliminated using substitutions. Thequanti�ers in SP(�)(�) and WP(��1)(�) annot be eliminated so easily in gen-eral. But in speial ases, for instane when the transition is \reversible" (forexample, the e�et of assignment x := x+ y an be reversed by the assignmentx := x� y), quanti�er elimination redues to substitution again. In ases whereexat quanti�er elimination is not possible, we an still get a orret proedureusing a quanti�er elimination proedure that returns a \weaker" formula, i.e.,we do not need an equivalene preserving quanti�er elimination proedure.Let <-simplify be a funtion suh that j= � ! <-simplify(�). We shalldenote the formula <-simplify(�) by � in the next theorem.Theorem 3. Let 0; 1; : : : ; i be an upward iteration sequene with wideningand �0; �1; : : : ; �i be a downward iteration sequene with narrowing (see Lem-mas 2 and 3). Then the sequene 0; 1; : : : ; i; i is also an upward iterationsequene with widening. Similarly, the sequene �0; �1; : : : ; �i�1; �0i, where �0i is�i�1 ^ �i, is also a downward iteration sequene with narrowing.Note that the formula �0i in Theorem 3 an be seen as results of \narrow-ing" in the sense of [9℄. Theorem 3 makes it possible for simple (and possiblyinomplete) quanti�er elimination proedures to suÆe for our purposes. Forinstane, when it is not possible to eliminate the existential quanti�er from9x:p(x) ^ q(x), we ould weaken this to 9x:p(x) ^ 9x:q(x) and perform quanti-�er elimination on atomi formulas. With suitable modi�ations as outlined inTheorem 3, our proedure ontinues to be orret. In fat, suh simpli�ationshelp in the onvergene of the iterations as well.Finally, as pointed out in Lemma 1, implementation of the above proedurean be optimized by ombining the arrays and � into a single array, say '.
 136

If individual formulas '[i℄ are always stored in disjuntive normal form, thenwe an distinguish the disjunts that would appear in [i℄ by marking them.In this way, a single propagation step an be used to update both and �.The implementation of the above proedure is being done in the framework ofSAL [1℄, whih is a olletion of di�erent tools for analyzing onurrent systems.4.3 Illustrative ExamplesWe shall provide ertain simple examples to illustrate the proedure. The theoryof interest is the theory of linear arithmeti, and we assume that we have an exatquanti�er elimination proedure.Example 3. Consider the example outlined in Setion 1. In this ase, the least�xed point sequene onverges in two steps. In partiular, we obtain the invariantp = in ! x = 0 ^ p = de ! x = 2.Example 4. A simpli�ed version of the Bakery mutual exlusion protool S =(V ; �; �) for two proesses p1 and p2 aessing a ritial setion s is given byV = fy1 : int; y2 : int; p1 : f1; 2; 3g; p2 : f1; 2; 3gg, � is p1 = 1 ^ p2 =1^ y1 = 0^ y2 = 0, and � is de�ned by the following set of guarded transitions:p1 = 1 7�! y1 := y2 + 1; p1 := 2; // p1: tryp1 = 2 ^ (y2 = 0 _ y1 � y2) 7�! p1 := 3; // p1: enter sp1 = 3 7�! y1 := 0; p1 := 1; // p1: exit sp2 = 1 7�! y2 := y1 + 1; p2 := 2; // p2: tryp2 = 2 ^ (y1 = 0 _ y2 < y1) 7�! p2 := 3; // p2: enter sp2 = 3 7�! y2 := 0; p2 := 1; // p2: exit sSine this system has an in�nite number of reahable states, the least �xed pointomputation sequene does not onverge. We hoose to de�ne 9 ontrol loationsbased on the values of p1 and p2 variables, and we shall use the notation �[i; j℄to denote the urrent invariant at ontrol loation p1 = i ^ p2 = j. After afew iterations, the greatest �xed point iterations yield a formula �, with thefollowing three loal invariants (due to spae restritions, we are not writingdown the omplete formula here):�[3; 1℄ : y2 = 0�[3; 2℄ : (y2 = y1 + 1) _ (y1 = 1 ^ y2 = 0)�[3; 3℄ : (y1 = 0 ^ y2 = 1) _ (y1 = 1 ^ y2 = 0)The disjunt �, de�ned as y1 = 0^ y2 = 1, in ontrol loation p1 = 3^ p2 = 3an be onjetured to be unreahable (as the formula [3; 3℄ in the least �xedpoint iterations is always false) and for a suitable hoie of k, the formula� := propagation(p1 = 3 ^ p2 = 3 ^ �; ��1; false; k) ontains the followingstrongly onneted set of unreahable states,�[3; 3℄ : y1 = 0 �[3; 2℄ : y1 = 0 �[2; 3℄ : y1 = 0�[3; 1℄ : y1 = 0 �[2; 2℄ : y1 = 0 �[2; 1℄ : y1 = 0
 137

Similarly, we an eliminate the other possibility (y1 = 1 ^ y2 = 0) at ontrolloation p1 = 3 ^ p2 = 3. This proves mutual exlusion. We an also use asingle widening step to obtain an indutive invariant strong enough to provemutual exlusion. Note that it was pointed out in [5℄ that the omputation of��:(WP(�)(�) ^ (p1 = 3 ^ p2 = 3 ! false)) terminates in a �nite number ofsteps and yields an invariant that proves mutual exlusion.Example 5. Consider the following transitions:p = 1 7�! x := x+ 2; y := y + 2; p := 2;p = 2 7�! x := x� 2; y := y + 2; p := 1;with initial state prediate p = 1 ^ x = 0 ^ y = 0. Assuming that the variablesx and y are delared to be integers, neither the least �xed point sequene, northe greatest �xed point sequene onverges. After a few iterations for omputingthe greatest �xed point, the formula � we obtain is:p = 1! (x = 0 ^ y = 0) _ (x = 0 ^ y = 4) _ (x � 0 ^ y � 8)p = 2! (x = 2 ^ y = 2) _ (x = 2 ^ y = 6) _ (x � 2 ^ y � 10)The prediate � an be replaed by the prediates = and >. Now, the disjunt �an be hosen as x > 0^y � 8 and it an be onjetured to be unreahable. Theformula propagation(p = 1 ^ �; ��1; false; 2) ontains the following stronglyonneted set of unreahable states,p = 1! x > 0 ^ y � 8 p = 2! x > 2 ^ y � 6Conjuntion of the negation of this formula with the original invariant � givesthe following new invariant,p = 1! (x = 0 ^ y = 0) _ (x = 0 ^ y = 4) _ (x = 0 ^ y � 8)p = 2! (x = 2 ^ y = 2) _ (x = 2 ^ y = 6) _ (x = 2 ^ y � 10)As before, in this ase again widening an also be used to obtain a similarinvariant.5 Related Work and Conluding RemarksEarly work [10, 12℄ on generating invariant for sequential programs has beenextended to the ase of reative systems in [2, 5, 11, 13, 16℄. These methods areusually based on the propagation of invariants through the ontrol struture ofthe di�erent omponents and by ombining loal invariants of eah omponentto onstrut global invariants of the system.Forward and bakward propagation using operators SP(�) and WP(�) is alsoused in [5℄ as the basi tehnique for generating invariants. In addition, over-approximations suh as the onvex hull of the union of polyhedra, are used for
 138

widening �xed point omputations. Our approah di�ers in that we onsidersimultaneous forward and bakward propagation for omputing both lower andupper bounds of the reahable state sets. These bounds are also used for om-puting suitable narrowing and widening operators. The ombination of thesetehniques usually yields muh stronger invariants. Moreover, our algorithm isan any-time algorithm, in the sense that it an be interrupted at any time to yieldthe most re�ned indutive invariant omputed up to the point of interruption.The method of generalized reaÆrmed invariane and propagation was intro-dued in [2℄ and is based on aÆrming loal invariants of the form SP(�(�))(true)and propagating these loal invariants along all transitions. This proess of af-�rmation and propagation, however, is performed only in the speial ase whenall the existential quanti�ers arising in the proess are trivial, i.e., when thequanti�ed variables do not our in the rest of the formula; the twos example inthe introdution does not possess this property. The tehnique presented in [2℄also uses information about the ontrol transition graph, espeially knowledgeabout yles and how variables are manipulated in the yle transitions, to gen-erate stronger invariants. In some ases, these stronger loal invariants an begenerated by repeated propagation (in the stronger sense de�ned in this paper).In general, however, the detetion of unreahable yles is ruial, as outlined inTheorem 1.Tehniques based on abstration have also been proposed for generating in-variants [3,14℄. It appears attrative to �rst reate (�nite) abstrations for largeprograms and then to use standard propagation tehniques to obtain the setof states reahable in the abstrat system. This set an then be onretized toobtain invariants of the onrete system. Abstration an be ast as a speialwidening strategy in our proedure. More spei�ally, let (�;) be an abstrationand onretization pair (Galois onnetion) for a transition system S = (V ; �; �).Let Sa = (Va; �a; �a) denote the abstrat transition system. If (0)a ; (1)a ; (2)a ; : : :is a least �xed point omputation on the abstrat transition system Sa, then oneobtains a orresponding �xed point omputation with widening on the onretesystem (0); (1); (10); (2); (20); : : :as follows: the formula (i) is SP(�)((i�10))_ (i�10) (Step (i) of Lemma 2), and (i0) is (i)_(�((i))) (Step (ii) of Lemma 2). Now, if j= ((i)a)$ (i0), then itis also the ase that j= ((i+1)a)$ (i+10). Thus, the �xed point omputation onthe abstrat transition system an be suitably aptured in the onrete system.We shall not prove this laim here, but refer to [9℄ for a similar result.Note that the set of generated invariants is restrited to the ones expressiblein the language of the theory <. A program that performs multipliation byrepeated addition, for example, never uses the multipliation operator, but anyexpression that desribes the set of reahable states typially would use themultipliation operator.
 139

In summary, we present a tehnique for generation of indutive invariantsusing a ombination of least and greatest �xed point omputations of the forwardand bakward propagation operators. With obvious modi�ations, the resultsan be used to strengthen invariants. Thus, any tehnique for generation ofinvariants, indutive or not, an be inorporated with the tehniques in thispaper.Aknowledgements. We would like to thank S. Bensalem, S.Owre, Y. Lakhneh,J. Rushby, J. Sifakis, and the referees for their helpful omments.Referenes[1℄ S. Bensalem, V. Ganesh, Y. Lakhneh, C. Mu~noz, S. Owre, H. Rue�,J. Rushby, V. Rusu, H. Sa��di, N. Shankar, E. Singerman, and A. Ti-wari. An overview of SAL. In C. M. Holloway, editor, LFM 2000: FifthNASA Langley Formal Methods Workshop, pages 187{196, 2000. Available athttp://shemesh.lar.nasa.gov/fm/Lfm2000/Pro/.[2℄ S. Bensalem and Y. Lakhneh. Automati generation of invariants. Formal Meth-ods in System Design, 15:75{92, 1999.[3℄ S. Bensalem, Y. Lakhneh, and S. Owre. Computing abstrations of in�nite statesystems ompositionally and automatially. In Pro. of the 9th Conferene onComputer-Aided Veri�ation, CAV'98, LNCS. Springer Verlag, June 1998.[4℄ S. Bensalem, Y. Lakhneh, and H. Sa��di. Powerful tehniques for the automatigeneration of invariants. In R. Alur and T. A. Henzinger, editors, Computer-AidedVeri�ation, CAV '96, number 1102 in LNCS, pages 323{335. Springer-Verlag,1996.[5℄ N. Bj�rner, A. Browne, and Z. Manna. Automati Generation of Invariants andIntermediate Assertions. Theoretial Computer Siene, 1997.[6℄ F. Bourdonle. EÆient haoti iteration strategies with widenings. In Proeed-ings of the Intl Conf on Formal Methods in Programming and their Appliations,volume 735 of LNCS, pages 128{141. Springer Verlag, 1993.[7℄ E. M. Clarke, O. Grumberg, and D. E. Long. Model heking and abstration.ACM Transations on Programming Languages and Systems, 16(5):1512{1542,September 1994.[8℄ P. Cousot and R. Cousot. Abstrat interpretation: a uni�ed lattie model forstati analysis of programs by onstrution or approximation of �xpoints. In 4thPOPL, January 1977.[9℄ P. Cousot and R. Cousot. Comparing the Galois onnetion and widen-ing/narrowing approahes to abstrat interpretation. In M. Bruynooghe andM. Wirsing, editors, Pro. of the 4th Intl. Symposium on Programming LanguageImplementation and Logi Programming (PLILP '92), volume 631 of LNCS, pages269{295, Berlin, 1992. Springer-Verlag.[10℄ S. M. German and B. Wegbreit. A synthesizer of indutive assertions. IEEETransations on Software Engineering, 1(1):68{75, Marh 1975.[11℄ S. Graf and H. Sa��di. Verifying invariants using theorem proving. In Confereneon Computer Aided Veri�ation CAV'96, LNCS 1102, Springer Verlag, 1996.[12℄ S. Katz and Z. Manna. Logial analysis of programs. Communiations of theACM, 19(4):188{206, April 1976.
 140

[13℄ L. Lamport. The `Hoare logi' of onurrent programs. In Ata Informatia 14,pages 21{37, 1980.[14℄ C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property pre-serving abstrations for the veri�ation of onurrent systems. Formal Methodsin System Design, 6(1), January 1995.[15℄ Z. Manna and A. Pnueli. The Temporal Veri�ation of Reative Systems: Safety.Springer-Verlag, 1995.[16℄ S. Owiki and D. Gries. An axiomati proof tehnique for parallel programs. AtaInformatia, 6:319{340, 1976.[17℄ H. Sa��di and N. Shankar. Abstrat and model hek while you prove. In Computer-Aided Veri�ation, CAV '99, Trento, Italy, July 1999.

 141

